Summary

使用微孔培养法生成具有睾丸特定结构的猪睾丸组织

Published: October 03, 2019
doi:

Summary

在这里,我们提出了一个协议,用于使用市售的微孔培养系统,用睾丸特定组织架构的可重复生成猪睾丸器官。

Abstract

有机体是由多种细胞类型组成的三维结构,能够概括组织结构和体内器官的功能。有机物的形成开辟了基础研究和转化研究的不同途径。近年来,睾丸器官在男性生殖生物学领域引起了兴趣。睾丸类有机物允许研究细胞-细胞相互作用、组织发育和生殖细胞利基微环境,并促进高通量药物和毒性筛选。需要一种方法,以可靠和可重复地生成睾丸器官与睾丸特定的组织结构。微井培养系统包含密集的金字塔形微井阵列。从青春期前睾丸中提取的睾丸细胞被离心到这些微孔中,并培养成具有睾丸特异性组织架构和细胞关联的睾丸器官。通过这一过程可以产生数千个均质有机体。这里报道的协议将引起研究男性生殖的研究人员的广泛兴趣。

Introduction

近年来,人们对三维(3D)有机体的兴趣重新抬头。不同的器官,如肠1,胃2,腺3,4,肝脏5,大脑6已经成功地衍生成3D器官系统。与单层培养系统7相比,这些有机物与体内器官具有建筑和功能上的相似性,在研究组织微环境方面更具生物学相关性。结果,睾丸类物开始引起兴趣,以及8,9,10,11,12。迄今报告的大多数方法都是复杂的,非高通量10,并且需要添加ECM蛋白8,10。这种复杂性还会导致重现性问题。需要一种简单且可重复的方法,允许生成具有细胞关联(类似于体内睾丸)的睾丸器官。

我们最近报告有一个系统,以解决这些问题的要求12。以猪为模型,我们在微井系统中采用了离心强制聚集方法。在微井系统中,每口井都含有大量相同的小微井13。这允许生成大量均匀大小的球体。微井系统能够生成大量具有睾号特异性架构的均匀有机体。该系统简单,不需要添加ECM蛋白。

Protocol

注:从1周大的小猪身上获得睾号,作为商业猪的副产品。卡尔加里大学动物护理委员会批准了睾兽的采购。 1. 组织消化酶溶液的制备 注:需要三种不同的酶溶液,包括两种不同的胶原酶IV溶液(溶液A,B)和脱氧核糖核酸酶I(DNase I)溶液。 要制备溶液A,在25mL的高葡萄糖Dulbeco的改性鹰中分部(DMEM)中溶解20毫克胶原酶IV S(材料表)…

Representative Results

从微孔中自组织成球体的1周老猪睾的分离细胞(图1A,图2),具有划定和独特的外部(显性上皮)和内部隔间(插曲) (图 1B,图 2).两个隔间由胶原蛋白 IV+ve基底膜隔开。UCH-L1+ve生殖细胞和GATA4+saSertoli细胞位于地下室膜的外部隔间内(<st…

Discussion

我们已经建立了一个简单的方法,允许一致,可重复地生成大量的睾丸器官与组织结构,类似于睾丸在体内12。该方法是利用猪睾细胞开发的,但更广泛地适用于小鼠、非人类灵长类动物和人类睾人。已报告生产睾丸类有机物8、9、10、11的多种不同方法。Baert等人通…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH/NICHD HD091068-01对伊娜·多布林斯基博士的支持。

Materials

100 mm ultra low attachment tissue culture dish Corning #CLS3262
100 mm tissue culture dish Corning #353803
Aggrwell 400 Stemcell Technologies #34411
Anti-Adherence Rinsing Solution Stemcell Technologies #07010
Collagenase type IV from Clostridium histolyticum Sigma-Aldrich #C5138 referred as Collagenase IV S
Collagenase type IV Worthington Worthington-Biochem #LS004189 referred as Collagenase IV W
Deoxyribonuclease I from bovine pancreas Sigma-Aldrich #DN25
Dulbecco’s Modified Eagle’s Medium/F12 Gibco #11330-032
Dulbecco’s Modified Eagle’s Medium – high glucose Sigma-Aldrich #D6429
Dulbecco’s Phosphate Buffered Saline Sigma-Aldrich #D8537
Epidermal Growth Factor R&D Systems #236-EG
Falcon Cell Strainers 70 µm FisherScientific #352350
Falcon Cell Strainers 40 µm FisherScientific #352340
Fetal Bovine Serum ThermoFisher Scientific #12483-020
Insulin-Transferrin-Selenium Gibco #41400-045
Penicillin-Streptomycin Sigma-Aldrich #P4333
Porcine testicular tissue Sunterra Farms Ltd (Alberta, Canada)
Steriflip-GP Sterile Centrifuge Tube Top Filter Unit Millipore #SCGP00525
Trypsin-EDTA Sigma #T4049

References

  1. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  2. Barker, N., et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 6 (1), 25-36 (2010).
  3. Huch, M., et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. Embo Journal. 32 (20), 2708-2721 (2013).
  4. Boj, S. F., et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 160 (1-2), 324-338 (2015).
  5. Takebe, T., et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 499 (7459), 481-484 (2013).
  6. Quadrato, G., et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 545 (7652), 48-53 (2017).
  7. Abbott, A. Cell culture: biology’s new dimension. Nature. 424 (6951), 870-872 (2003).
  8. Pendergraft, S. S., Sadri-Ardekani, H., Atala, A., Bishop, C. E. Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity in vitrodagger. Biology of Reproduction. 96 (3), 720-732 (2017).
  9. Strange, D. P., et al. Human testicular organoid system as a novel tool to study Zika virus pathogenesis. Emerging Microbes & Infections. 7 (1), 82-82 (2018).
  10. Alves-Lopes, J. P., Soder, O., Stukenborg, J. B. Testicular organoid generation by a novel in vitro three-layer gradient system. Biomaterials. 130, 76-89 (2017).
  11. Baert, Y., et al. Primary Human Testicular Cells Self-Organize into Organoids with Testicular Properties. Stem Cell Reports. 8 (1), 30-38 (2017).
  12. Sakib, S., et al. Formation of organotypic testicular organoids in microwell culture. Biology of Reproduction. , (2019).
  13. Razian, G., Yu, Y., Ungrin, M. Production of Large Numbers of Size-controlled Tumor Spheroids Using Microwell Plates. Journal of Visualized Experiments. (81), 50665 (2013).
  14. Sakib, S., et al. Formation of organotypic testicular organoids in microwell culture. Biology of Reproduction. 100 (6), 1648-1660 (2019).
  15. González, R., Dobrinski, I. Beyond the Mouse Monopoly: Studying the Male Germ Line in Domestic Animal Models. ILAR Journal. 56 (1), 83-98 (2015).
  16. Oatley, J. M., Brinster, R. L. The germline stem cell niche unit in mammalian testes. Physiological Reviews. 92 (2), 577-595 (2012).
  17. Chen, L. Y., Willis, W. D., Eddy, E. M. Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development. Proceedings of the National Academy of Science USA. 113 (7), 1829-1834 (2016).
check_url/60387?article_type=t

Play Video

Cite This Article
Sakib, S., Yu, Y., Voigt, A., Ungrin, M., Dobrinski, I. Generation of Porcine Testicular Organoids with Testis Specific Architecture using Microwell Culture. J. Vis. Exp. (152), e60387, doi:10.3791/60387 (2019).

View Video