Summary

使用消耗法对溶液分散无机纳米颗粒进行短肽吸附研究

Published: April 11, 2020
doi:

Summary

理解生物分子-无机固相相互作用的第一步是揭示基本的物理化学常数,可以通过建立吸附等体来评估这些常数。液相的吸附受受动力学、表面容量、pH 和竞争吸附的限制,在设置吸附实验之前,应谨慎考虑这些。

Abstract

无机-有机相互作用的基础知识对于发现和开发适合生物技术和医学应用的新型生物界面至关重要。最近的研究表明,蛋白质通过有限的吸附位点与表面相互作用。氨基酸和肽等蛋白质片段可用于复杂生物大分子和无机表面之间的相互作用建模。在过去三十年中,开发了许多有效和敏感的方法来测量这些相互作用的物理化学基础:等温酸滴定热量测定(ITC)、表面质粒共振(SPR)、石英晶体微平衡(QCM)、总内部反射荧光(TIRF)和衰减总反射光谱(ATR)。

测量吸附方法最简单、最实惠的技术是耗竭方法,计算与溶液分散的吸附剂接触后,吸附液浓度(耗竭)的变化,并假定为吸附。基于耗竭数据的吸附等理会提供所有基本物理化学数据。但是,由于动力学限制和具有高特定表面积的吸附剂,来自解决方案的吸附需要较长的平衡时间,因此几乎不适用于宏观固定平面表面。此外,在研究吸附肽时,应考虑索尔的不稳定性、纳米颗粒聚集体、吸附晶体、纳米颗粒大小分布、溶液的pH级以及吸附竞争等因素。消耗数据是等构图,为几乎每一个可溶性沙球提供全面的物理化学数据,但仍然是最容易获得的方法,因为它不需要昂贵的设置。本文介绍了无机氧化物肽吸附实验研究的基本方案,涵盖了影响该工艺的所有临界点。

Introduction

在过去的50年里,无机表面和肽之间的相互作用因其在材料科学和医学中的重要性而备受关注。生物医学研究的重点是生物无机表面的相容性和稳定性,对再生医学、组织工程11、2、32,3和植入44、5、6、75,6,7有直接影响。当代,的生物反应装置,如传感器和执行器,基于在氧化物半导体表面8、9、10、11、12、139,10上固定的功能蛋白。,12,13811蛋白质生产的现代纯化方法往往依赖于下游纯化和分离中的生物分子相互作用特性

在多种无机氧化物中,二氧化钛仍然是与生物相关基板15、16,16结合使用最多的。基于TiO2的生物界面领域的研究侧重于在不改变其生物和结构特性的情况下建立蛋白质和肽的强结合和特异性结合。最终,主要目标是高表面密度层的生物分子,具有高稳定性和更高的功能,将推动基于钛的生物技术和医疗应用的创造17。

钛及其合金已被广泛用作手术植入材料至少60年,因为厚度只有几纳米的表面TiO2层具有耐腐蚀性,在许多体内应用中表现出,19,高度的生物相容性。二氧化钛也被广泛认为是生物矿化中产生的无机基板,其中以蛋白质和肽伴有的成核和无机相生长可为材料提供具有前景的催化和光学特性21、22、23、24。21,22,23,24

鉴于无机材料与生物分子相互作用与蛋白质-TiO2相互作用之间的高相关性,已经有很多研究来解决TiO2上蛋白质吸附的操纵和控制问题。由于这些研究,这种相互作用的一些基本特性已经显现出来,如吸附动力学、表面覆盖和生物分子构象,为生物接口55、1313的进一步进步提供了实质性支持。

然而,蛋白质复杂性对完全确定和理解蛋白质与无机表面的分子水平相互作用增加了相当大的限制。假设生物分子通过有限的位点与无机表面相互作用,一些具有已知结构和氨基酸序列的蛋白质已减少到其成分-肽和氨基酸,分别研究。其中一些肽表现出显著的活性,使它们成为吸附研究的一个独特的课题,无需以前的蛋白质分离25,26,27,28,29,30。25,26,27,28,29,30

TiO2或其他无机表面的肽吸附定量表征可以通过物理方法完成,这些物理方法在过去几十年中专门针对生物分子进行了调整。这些方法包括等温滴节激素测定(ITC)、表面质粒共振(SPR)、石英晶体微平衡(QCM)、总内部反射荧光(TIRF)和衰减总反射光谱(ATR),所有这些都通过提供关键热力学数据(结合常量、吉布斯自由能、食体和熵31)来检测吸附强度。

生物分子对无机材料的吸附可以通过两种方式完成:1)ITC以及消耗方法使用分散在溶液中颗粒的固定宏观表面;2) SPR、QCM、TIRF 和 ATR 分别使用用无机材料修改的宏观表面,如镀金玻璃或金属芯片、石英晶体、硫化锌晶体和 PMMA 芯片。

等温滴热质(ITC)是一种无标签的物理方法,用于测量溶液或异质混合物滴定时产生或消耗的热量。敏感热敏细胞检测的热量效应小至100纳米焦耳,从而有可能测量纳米粒子表面的吸附热量。连续加滴滴期间,沙液的热性能,提供了相互作用的完整热力学轮廓,揭示在给定温度下32、33、34、35、36下,揭示粘结、结合常数和熵。,33,34,35,36

表面质粒共振(SPR)光谱学是一种表面敏感光学技术,基于测量靠近研究表面的介质折射率。它是一种实时且无标签的方法,用于监控可逆吸附和吸附层厚度。绑定常量可以从关联和分离率计算。在不同温度下进行的吸附实验可能提供有关活化能的温度依赖性以及按顺序进行其他热力学参数37、38、3938,39的信息。37

石英晶体微平衡 (QCM) 方法测量压电晶体在吸附和脱盐过程中振荡频率的变化。结合常量可以从吸附率和脱离率常数的比率进行评估。QCM用于相对质量测量,因此不需要校准25,27,40。27,4025QCM 用于气体和液体的吸附。液体技术允许QCM用作分析工具,用于描述各种修饰表面的沉积41。

总内部反射荧光 (TIRF) 是一种基于测量吸附荧光荧光的敏感光学界面技术,具有内部反射的消逝波激发。该方法允许检测覆盖表面的荧光分子,其厚度在数十纳米左右,这就是为什么它用于研究各种表面的大分子吸附42,43。42,吸附和脱附时对荧光动力学进行原位监测,可提供吸附动力学,因此热力学数据42、43。42,

衰减总反射率(ATR)被罗迪克-兰齐洛塔用于建立基于1,600和1,525cm-1的莱辛光谱波段的莱辛吸附异从。这是首次使用原位红外方法44测定TiO2上肽的绑定常量。该技术有效地建立了多解合肽45和酸性氨基酸46的吸附等理。

与上述方法不同,吸附参数是原地测量的,在常规实验中,吸附生物分子的量是通过表面接触溶液后的浓度变化来测量的。由于在绝大多数吸附情况下,沙球的浓度衰减,这种方法被称为耗竭方法。浓度测量需要经过验证的分析测定,该测定可能基于沙球的内在分析特性,或基于标签47、48、49、5048,49,50或衍生51,52。,52 47

使用 QCM、SPR、TIRF 或 ATR 进行吸附实验需要用于吸附研究的芯片和传感器的特殊表面制备。由于氧化物表面不可避免的水化或沙球的化学化,制备的表面应使用一次,并在切换吸附剂时需要改变。一次只能使用 ITC、QCM、SPR、TIRF 或 ATR 运行一个样品,而在耗尽方法中,可以运行数十个样本,而数量仅受恒温器容量和吸附可用性的限制。这一点在处理大样本批次或生物活性分子库时尤其重要。重要的是,耗竭方法不需要昂贵的设备,而只需要恒温器。

然而,尽管耗竭方法具有明显的优点,但它需要复杂的程序特征,这些特征可能看起来很麻烦。本文介绍了如何使用耗竭方法对TiO2进行二肽吸附的综合物理化学研究,并解决研究人员在进行相关实验时可能面临的问题。

Protocol

1. 制备二肽库存溶液和稀释 制备16 mM二肽溶液 将0.183克二肽(Ile-His)(参见材料表)放入无菌聚合物试管中,用双蒸馏水 (DDW) 稀释至 35 mL,并在室温 (RT) 下在剧烈搅拌下溶解。注:如果二肽在搅拌时未溶解在DDW中,将二肽溶液放入超声波浴中并声波几分钟。 通过在无菌试管中溶解50 mLDDW中的干燥2(N-morpholino)ethanesulfonic酸,制备50mM溶液2-(N-morpholino)?…

Representative Results

在0~40°C的生物相容条件下,研究了纳米晶体二氧化钛二肽的吸附。二氧化钛表面的实验二肽吸附(A,mmol/g)被评价为 其中C0和C e分别为毫摩尔的二肽起始和平衡浓度;V是升中二肽溶液的体积;m是吸附剂…

Discussion

由于动力学限制和具有高特定表面积的吸附剂,从等值结构解决方案中吸附需要较长的平衡时间。此外,在吸附氨基酸时,应考虑sol、纳米粒子聚集体、结晶性、纳米颗粒大小分布、溶液的pH含量以及吸附竞争。然而,使用耗竭方法进行吸附等体结构仍然是最可用的方法,因为它不需要昂贵的设置,但它为字面上每个可溶性沙球提供了详尽的物理化学数据。

当晶体材料用作吸…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了俄罗斯基础研究基金会(第15-03-07834-a号赠款)的财政支助。

Materials

2-(N-Morpholino)ethanesulfonic acid TCI Chemicals 4432-31-9 MES, >98%
Acetonitrile Panreac AppliChem HPLC grade
Chromatography vials glass
Dipeptide Ile-His Bachem 4000894
Double-distilled water DDW was obtained on spot
Heating cleaning bath "Ultrasons-HD" J.P. Selecta 3000865 5 L, 40 kHz, 120 Watts
High-performance liquid chromatograph system equipped with a UV−vis detector Shimadzu, LC-20 Prominence HPLC
Isopropanol Sigma-Aldrich (Merck) 67-63-0 99.70%
LabSolutions Lite Shimadzu 223-60410 Software for high-performance liquid chromatography system
Nanocrystalline TiO2 Pure anatase with at least 99% crystallinity. Average particle size 10.62 ± 3.31 nm. Specific surface 131.9 m2/g (BET). See Langmuir 2019, 35, 538−550, for details.
Phenyl isothiocyanate Acros Organics 103-72-0 PITC, 98%
Reversed-phase Zorbax column ZORBAX LC 150×2.5 mm i.d. with a mean particle size of 5 μm
Syringe filter Vladfilter 25 mm, 0.2 μm pore, cellulose acetate
Test sterile polymeric tube polypropylene
Thermostat TC-502 Brookfield Refrigerating/heating circulating bath with the programmable controller for the sample derivatization
Triethylamine Sigma-Aldrich (Merck) 121-44-8 TEA; 99%
Trifluoroacetic acid Panreac AppliChem 163317 TFA, 99%

References

  1. Garcia, A. J. Interfaces to Control Cell-Biomaterial Adhesive Interactions. Polymers for Regenerative Medicine. 203, 171-190 (2006).
  2. Mahmood, T. A., et al. Modulation of chondrocyte phenotype for tissue engineering by designing the biologic-polymer carrier interface. Biomacromolecules. 7 (11), 3012-3018 (2006).
  3. Gandavarapu, N. R., Mariner, P. D., Schwartz, M. P., Anseth, K. S. Extracellular matrix protein adsorption to phosphate-functionalized gels from serum promotes osteogenic differentiation of human mesenchymal stem cells. Acta Biomaterialia. 9 (1), 4525-4534 (2013).
  4. Horbett, T. Biological Activity of Adsorbed Proteins. Surfactant Science Series. 110, 393-413 (2010).
  5. Ratner, B. D., Hoffman, A. S., Schoen, F. J., Lemons, J. E. . Biomaterials Science: An Introduction to Materials in Medicine. , (2004).
  6. Jahangir, A. R., et al. Fluorinated surface-modifying macromolecules: Modulating adhesive protein and platelet interactions on a polyether-urethane. Journal of Biomedical Materials Research. 60 (1), 135-147 (2002).
  7. Shen, M., et al. PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: In vitro and in vivo studies. Journal of Biomaterials Science, Polymer Edition. 13 (4), 367-390 (2002).
  8. Wisniewski, N., Moussy, F., Reichert, W. M. Characterization of implantable biosensor membrane biofouling. Fresenius’ Journal of Analytical Chemistry. 366 (6-7), 611-621 (2000).
  9. Geelhood, S. J., et al. Passivating Protein Coatings for Implantable Glucose Sensors: Evaluation of Protein Retention. Journal of Biomedical Materials Research. Part B, Applied Biomaterials. 81, 251-260 (2007).
  10. Knowles, J. R. Enzyme catalysis: not different, just better. Nature. 350 (6314), 121-124 (1991).
  11. Blankschien, M. D., et al. Light-triggered biocatalysis using thermophilic enzyme – Gold nanoparticle complexes. ACS Nano. 7 (1), 654-663 (2013).
  12. Wu, H., et al. Catechol modification and covalent immobilization of catalase on titania submicrospheres. Journal of Molecular Catalysis B: Enzymatic. 92, 44-50 (2013).
  13. Gray, J. J. The interaction of proteins with solid surfaces. Current Opinion in Structural Biology. 14 (1), 110-115 (2004).
  14. Hlady, V., Buijs, J. Protein adsorption on solid surfaces. Current Opinion in Biotechnology. 7 (1), 72-77 (1996).
  15. Kulkarni, M., et al. Titanium nanostructures for biomedical applications. Nanotechnology. 26 (6), 062002 (2015).
  16. Yin, F. Z., Wu, L., Gui Yang, H., Su, H. Y. Recent progress in biomedical applications of titanium dioxide. Physical Chemistry Chemical Physics. 15 (14), 4844-4858 (2013).
  17. Rezania, A., Johnson, R., Lefkow, A. R., Healy, K. E. Bioactivation of metal oxide surfaces. 1. Surface characterization and cell response. Langmuir. 15 (20), 6931-6939 (1999).
  18. Schenk, R., Brunette, D. M., et al. The Corrosion Properties of Titanium and Titanium Alloys. Titanium in Medicine. , 145-170 (2001).
  19. Bozzini, B., et al. An electrochemical impedance investigation of the behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications. Journal of Materials Science: Materials in Medicine. 19 (11), 3443-3453 (2008).
  20. Popa, M. V., et al. Long-term assessment of the implant titanium material – Artificial saliva interface. Journal of Materials Science: Materials in Medicine. 19 (1), 1-9 (2008).
  21. Kim, J. K., et al. Lysozyme-mediated biomineralization of titanium-tungsten oxide hybrid nanoparticles with high photocatalytic activity. Chemical Communications. 50, 12392-12395 (2014).
  22. Suriyaraj, S. P., Selvakumar, R. Room temperature biosynthesis of crystalline TiO2 nanoparticles using Bacillus licheniformis and studies on the effect of calcination on phase structure and optical properties. RSC Advances. 4, 39619-39624 (2014).
  23. Inoue, I., et al. Thermo-stable carbon nanotube-TiO2 nanocompsite as electron highways in dye-sensitized solar cell produced by bio-nano-process. Nanotechnology. 26 (28), 285601 (2015).
  24. Gardères, J., et al. Self-assembly and photocatalytic activity of branched silicatein/silintaphin filaments decorated with silicatein-synthesized TiO2 nanoparticles. Bioprocess and Biosystems Engineering. 39 (9), 1477-1486 (2016).
  25. Chen, H., Su, X., Neoh, K. G., Choe, W. S. QCM-D analysis of binding mechanism of phage particles displaying a constrained heptapeptide with specific affinity to SiO2 and TiO2. Analytical Chemistry. 78 (14), 4872-4879 (2006).
  26. Iucci, G., et al. Peptides adsorption on TiO2 and Au: Molecular organization investigated by NEXAFS, XPS and IR. Surface Science. 601 (18), 3843-3849 (2007).
  27. Gronewold, T. M. A., Baumgartner, A., Weckmann, A., Knekties, J., Egler, C. Selection process generating peptide aptamers and analysis of their binding to the TiO2 surface of a surface acoustic wave sensor. Acta Biomaterialia. 5 (2), 794-800 (2009).
  28. Gitelman, A., Rapaport, H. Bifunctional designed peptides induce mineralization and binding to TiO2. Langmuir. 30 (16), 4716-4724 (2014).
  29. Tada, S., Timucin, E., Kitajima, T., Sezerman, O. U., Ito, Y. Direct in vitro selection of titanium-binding epidermal growth factor. Biomaterials. 35 (11), 3497-3503 (2014).
  30. Micksch, T., Liebelt, N., Scharnweber, D., Schwenzer, B. Investigation of the peptide adsorption on ZrO2, TiZr, and TiO2 surfaces as a method for surface modification. ACS Applied Materials and Interfaces. 6 (10), 7408-7416 (2014).
  31. Limo, M. J., Perry, C. C., Thyparambil, A. A., Wei, Y., Latour, R. A. Experimental Characterization of Peptide-Surface Interactions. Bio-Inspired Nanotechnology: From Surface Analysis to Applications. , 37-94 (2013).
  32. Draczkowski, P., Matosiuk, D., Jozwiak, K. Isothermal titration calorimetry in membrane protein research. Journal of Pharmaceutical and Biomedical Analysis. 87, 313-325 (2014).
  33. Omanovic-Miklicanin, E., Manfield, I., Wilkins, T. Application of isothermal titration calorimetry in evaluation of protein-nanoparticle interactions. Journal of Thermal Analysis and Calorimetry. 127, 605-613 (2017).
  34. Jing, X., et al. Interaction of peptidomimetics with bilayer membranes: Biophysical characterization and cellular uptake. Langmuir. 28 (11), 5167-5175 (2012).
  35. Mizuguchi, C., et al. Effect of phosphatidylserine and cholesterol on membrane-mediated fibril formation by the N-terminal amyloidogenic fragment of apolipoprotein A-I. Scientific Reports. 8 (1), 5497 (2018).
  36. Bisker, G., et al. Insulin Detection Using a Corona Phase Molecular Recognition Site on Single-Walled Carbon Nanotubes. ACS Sensors. 3 (2), 367-377 (2018).
  37. Singh, N., Husson, S. M. Adsorption thermodynamics of short-chain peptides on charged and uncharged nanothin polymer films. Langmuir. 22 (20), 8443-8451 (2006).
  38. Seker, U. O. S., et al. Thermodynamics of engineered gold binding peptides: Establishing the structure-activity relationships. Biomacromolecules. 15 (7), 2369-2377 (2014).
  39. Beutner, R., Michael, J., Schwenzer, B., Scharnweber, D. Biological nano-functionalization of titanium-based biomaterial surfaces: A flexible toolbox. Journal of the Royal Society Interface. 7 (Suppl 1), S93-S105 (2010).
  40. Sultan, A. M., et al. Aqueous Peptide-TiO2 Interfaces: Isoenergetic Binding via Either Entropically or Enthalpically Driven Mechanisms. ACS Applied Materials and Interfaces. 8 (28), 18620-18630 (2016).
  41. Teichroeb, J. H., Forrest, J. A., Jones, L. W., Chan, J., Dalton, K. Quartz crystal microbalance study of protein adsorption kinetics on poly(2-hydroxyethyl methacrylate). Journal of Colloid and Interface Science. 325 (1), 157-164 (2008).
  42. Lok, B. K., Cheng, Y. L., Robertson, C. R. Protein adsorption on crosslinked polydimethylsiloxane using total internal reflection fluorescence. Journal of Colloid And Interface Science. 91 (1), 104-116 (1983).
  43. Nakanishi, K., Sakiyama, T., Imamura, K. On the Adsorption of Proteins on Solid Surfaces, a Common but Very Complicated Phenomenon. Journal of Bioscience and Bioengineering. 91 (3), 233-244 (2001).
  44. Roddick-Lanzilotta, A. D., Connor, P. A., McQuillan, A. J. An In Situ Infrared Spectroscopic Study of the Adsorption of Lysine to TiO2 from an Aqueous Solution. Langmuir. 14, 6479-6484 (1998).
  45. Roddick-Lanzilotta, A. D., McQuillan, A. J. An in situ infrared spectroscopic investigation of lysine peptide and polylysine adsorption to TiO2 from aqueous solutions. Journal of Colloid and Interface Science. 217 (1), 194-202 (1999).
  46. Roddick-Lanzilotta, A., McQuillan, A. An in situ infrared spectroscopic study of glutamic acid and of aspartic acid adsorbed on TiO2: implications for the biocompatibility of titanium. Journal of Colloid and Interface Science. 227 (1), 48-54 (2000).
  47. Chan, B. M. C., Brash, J. L. Adsorption of fibrinogen on glass: reversibility aspects. Journal of Colloid And Interface Science. 82 (1), 217-225 (1981).
  48. van Enckevort, H. J., Dass, D. V., Langdon, A. G. The adsorption of bovine serum albumin at the stainless-steel/aqueous solution interface. Journal of Colloid And Interface Science. 98 (1), 138-143 (1984).
  49. Arnebrant, T., Nylander, T. Sequential and competitive adsorption of β-lactoglobulin and κ-casein on metal surfaces. Journal of Colloid And Interface Science. 111 (2), 529-533 (1986).
  50. Van Dulm, P., Norde, W. The adsorption of human plasma albumin on solid surfaces, with special attention to the kinetic aspects. Journal of Colloid And Interface Science. 91 (1), 248-255 (1983).
  51. Gonçalves, T. Fluorescent labeling of biomolecules with organic probes. Chemical Reviews. 109 (1), 190-212 (2009).
  52. Roth, K. D. W., Huang, Z. H., Sadagopan, N., Watson, J. T. Charge derivatization of peptides for analysis by mass spectrometry. Mass Spectrometry Reviews. 17 (4), 255-274 (1998).
  53. Heinrikson, R. L., Meredith, S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: Precolumn derivatization with phenylisothiocyanate. Analytical Biochemistry. 136 (1), 65-74 (1984).
  54. Shchelokov, A., et al. Adsorption of Native Amino Acids on Nanocrystalline TiO2: Physical Chemistry, QSPR, and Theoretical Modeling. Langmuir. 35 (2), 538-550 (2019).
  55. Fair, B. D., Jamieson, A. M. Studies of Protein Adsorption on Polystyrene Latex Surfaces. Journal of Colloid and Interface Science. 77 (2), 525-534 (1980).
  56. Kim, J. C., Lund, D. B. Adsorption behavior of p-lactoglobulin onto stainless steel surfaces. Journal of Food Processing and Preservation. 21 (607), 303-317 (1997).
  57. Kondo, A., Oku, S., Murakami, F., Higashitani, K. Conformational changes in protein molecules upon adsorption on ultrafine particles. Colloids and Surfaces B: Biointerfaces. 1, 197-201 (1993).
  58. Itoh, H., Nagai, T., Saeki, T., Sakiyama, T., Nakanishi, K. Adsorption of Protein onto Stainless Steel Particle Surface and its Desorption Behavior. Developments in Food Engineering. , 811-813 (1994).
  59. Itoh, H., Nagata, A., Toyomasu, T., Sakiyama, T., Nagai, T. Adsorption of β-Lactoglobulin onto the Surface of Stainless Steel Particles. Bioscience, Biotechnology, and Biochemistry. 59 (9), 1648-1651 (1995).
  60. Mudunkotuwa, I. A., Grassian, V. H. Histidine adsorption on TiO2 nanoparticles: An integrated spectroscopic, thermodynamic, and molecular-based approach toward understanding nano-bio interactions. Langmuir. 30, 8751-8760 (2014).
  61. Pászti, Z., Guczi, L. Amino acid adsorption on hydrophilic TiO2: A sum frequency generation vibrational spectroscopy study. Vibrational Spectroscopy. 50 (1), 48-56 (2009).
  62. Costa, D., Savio, L., Pradier, C. M. Adsorption of Amino Acids and Peptides on Metal and Oxide Surfaces in Water Environment: A Synthetic and Prospective Review. Journal of Physical Chemistry B. 120 (29), 7039-7052 (2016).
  63. Kosmulski, M. The significance of the difference in the point of zero charge between rutile and anatase. Advances in Colloid and Interface Science. 99 (3), 255-264 (2002).
  64. Kandegedara, A., Rorabacher, D. B. Noncomplexing tertiary amines as “better” buffers covering the range of pH 3-11. Temperature dependence of their acid dissociation constants. Analytical Chemistry. 71 (15), 3140-3144 (1999).
  65. Susumu, O., Teruaki, A., Koichi, T. The Adsorption of Basic a-Amino Acids in an Aqeous Solution by Titanium(IV) Oxide. Bulletin of the Chemical Society of Japan. 54, 1595-1599 (1981).
check_url/60526?article_type=t

Play Video

Cite This Article
Korina, E., Naifert, S., Morozov, R., Potemkin, V., Bol’shakov, O. Study of Short Peptide Adsorption on Solution Dispersed Inorganic Nanoparticles Using Depletion Method. J. Vis. Exp. (158), e60526, doi:10.3791/60526 (2020).

View Video