Summary

从高致病性H5N1病毒和禽流感病毒中生产含有包络糖蛋白的高蒂特感染性流感伪型颗粒

Published: January 15, 2020
doi:

Summary

该协议描述了一个实验过程,以产生高蒂特传染性病毒伪型颗粒(pp),包络糖蛋白从两个流感A毒株,以及如何确定其传染性。该协议具有很强的适应性,可开发具有不同包络糖蛋白的任何其他类型的包络病毒的pps。

Abstract

H5N1型禽流感病毒(H5N1)和H7N9偶尔直接传染给人类及其杀伤力,是严重的公共卫生问题,表明有可能发生疫情。然而,我们对病毒的分子理解还很原始,有必要研究其包络蛋白作为治疗靶点的生物特性,并制定控制感染的策略。我们开发了一个固体病毒伪型颗粒(pp)平台来研究禽流感病毒,包括其血凝素(HA)和神经氨酸酶(NA)包络糖蛋白的功能分析,HA和NA的重组特性,受体,营养,中和抗体,诊断,感染,用于药物开发和疫苗设计。在这里,我们描述了一个实验程序,以建立从两种甲型流感菌株(HAPI H5N1和2013年禽流感H7N9)的包络糖蛋白(HA,NA)的pps。他们的一代是基于一些病毒的能力,如鼠白血病病毒(MLV),将包络糖蛋白纳入一个pp。此外,我们还详细介绍了这些 pps 如何用 RT-qPCR 进行量化,以及根据 HA 和 NA 的来源对原生病毒和不匹配病毒 pp 的感染性检测。该系统是高度灵活和适应性强,可用于建立病毒pps与包络糖蛋白,可以纳入任何其他类型的包络病毒。因此,该病毒粒子平台可用于研究野生病毒的许多研究。

Introduction

病毒粒子的使命是将其基因组从受感染的宿主细胞输送到未受感染的宿主细胞,并将其以具有复制能力的形式1的形式输送到细胞质或细胞核中。这个过程最初由结合到宿主细胞受体触发,然后是病毒和细胞膜的融合。对于包络病毒,如流感病毒,尖峰糖蛋白负责受体结合和融合1,2。病毒包络糖蛋白(例如,热原、抗原)涉及许多重要特性和事件,如病毒生命周期启动(结合和融合)、病毒发病机制、免疫原性、宿主细胞凋亡和细胞代谢、细胞内分泌途径以及物种间传播和重组1、3、4、5、6、7。研究病毒包络糖蛋白将有助于我们了解病毒感染过程的许多方面。伪型病毒粒子(pp),也称为伪病毒或伪粒子,可以通过伪打字技术8,9,10生成。这项技术已用于开发多种病毒的伪型颗粒,包括丙型肝炎11、12、乙型肝炎13、脉体口腔炎病毒(VSV)14、15和流感病毒16、17、18、19。该技术基于慢病毒或其他逆转录病毒的Gag-Pol蛋白。

假型病毒颗粒可以通过将病毒包络糖蛋白表达质粒、缺少包络基因的抗逆转录病毒包装质粒和单独的报告质粒转化为pp生产者细胞,从而获得三质粒系统。逆转录病毒由Gag蛋白组装而成,它从表达病毒包络蛋白1的受感染细胞膜中发芽。因此,利用逆转录病毒Gag蛋白在表达流感HA和NA的细胞膜上产生芽是可能的。在我们以前的研究中,所有组合中的HAs/NA都是功能性的,能够在病毒生命周期16、17、18、20、21中执行相应的功能。这些pps用于研究流感生物特性,包括血凝、神经氨酸酶活性、HA受体结合对流和传染性。由于HA和NA都是病毒生命周期中重要的表面功能蛋白,从不同流感毒株衍生的不匹配的HA和NA可以部分地证明它们之间的重组。在这里,我们通过使用三个质粒伪型粒系统组合两个HA和两个NA(源自HPAI H5N1病毒株和H7N9染色)来生成八种类型的流感pps。这八种类型的pps包括两个原生pps,H5N1pp,H7N9pp;两个不匹配的 pps,(H5_N9)pp,(H7+N1)pp;和4pps只含有单糖蛋白(HA或NA),H5pp,N1pp,H7pp,N9pp。所有野生流感病毒株的研究都应在生物安全3级(BSL-3)实验室进行。伪型病毒颗粒技术可用于在生物安全级别 2 (BSL-2) 设置中包装人工病毒。因此,pps 是研究流感病毒过程的一个更安全和有用的工具,具体取决于其两种主要糖蛋白:血凝素 (HA) 和神经氨酸酶 (NA)。

该协议描述了这些pps的生成与三质粒共转染策略(在图1概述),如何量化pps和感染性检测。pp生产涉及三种质粒(图1)。编码逆转录病毒Gag-Pol蛋白的gag-pol基因从逆转录病毒包装试剂盒中克隆,并插入pcDNA 3.1质粒,并命名为pcDNA-Gag-Pol。编码绿色荧光蛋白的增强型绿色荧光蛋白(eGFP)基因从pTRE-EGFP载体克隆,插入pcDNA 3.1质粒,称为pcDNA-GFP。在克隆过程中,通过引信添加包装信号(*)序列。HA和NA基因被克隆成pVRC质粒,分别命名为pVRC-HA和pVRC-NA。最后一个质粒编码融合蛋白,可以替换为任何其他感兴趣的融合蛋白。我们的伪打字平台包括两个糖蛋白表达质粒:pVRC-HA和pVRC-NA。这可以简化在BSL-2设置中不同病毒株之间的重新分类研究。

Protocol

1. 第1天:细胞培养和播种 在 60 mm 培养的 60 mm 培养皿中培养人类胚胎肾 (HEK) 293T/17 细胞,使用 Dulbeco 的改性必需介质 (DMEM) 辅以 10% 胎儿牛血清 (FBS) 和 100 U/mL 青霉素-链霉素 (DMEM 完整介质, DCM) 在 37°C, 5% 二氧化碳 (CO2) 培养箱中,直到约 80% 的汇合。注:建议使用HEK 293T/17低通道单元。 用5 mL的磷酸盐缓冲盐水(PBS)1x小心清洗细胞。注:HEK 293T/17 单元?…

Representative Results

根据上述一般程序,我们生成了 10 种类型的 pps,结合两组 HA/NA 或 VSV-G 糖蛋白或无包络糖蛋白(如表 1所示)。其中七种具有传染性。含有无包络糖蛋白或仅含有NA的pps在这里没有表现出任何感染力。图1概述了流感pp的生产工艺。pps的透射电子显微图(例如,H5N1pp)如图3所示。这些pps的传染性测定结果如图4所示。七?…

Discussion

在此协议中,我们描述了在BSL-2设置下产生流感病毒伪型颗粒(pp)的方法。报告员质粒 pcDNA-GFP 被合并到 pps 中,可用于在感染性测定中通过 FACS 对 pps 进行量化。我们选择了两种类型的易感细胞系,因为它们在流感研究中被广泛使用。MDCK细胞将很好地控制这些研究中使用的可变永生的人类细胞。

该协议基于逆转录病毒MLV,它可以合并GFP报告器,并在细胞膜上产生芽。这项技…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了浙江省医药卫生科技计划(授权号,2017KY538)、杭州市医药卫生科技计划(授权号,OO20190070)、杭州医药科学与技术重点项目(授权号,2014Z11)和杭州市社会发展与科学研究自主应用项目(授权号,20191203B134)。

Materials

Benzonase Nuclease Millipore 70664 Effective viscosity reduction and removal of nucleic acids from protein solutions
Clear Flat Bottom Polystyrene TC-treated Microplates (96-well) Corning 3599 Treated for optimal cell attachment
Sterilized by gamma radiation and certified nonpyrogenic
Individual alphanumeric codes for well identification
Clear TC-treated Multiple Well Plates (6-wells) Costar 3516 Individual alphanumerical codes for well identification
Treated for optimal cell attachment
Sterilized by gamma irradiation
Dulbecco's modified essential medium (DMEM) Gibco 11965092 A widely used basal medium for supporting the growth of many different mammalian cells
Fetal bovine serum Excell FND500 fetal bovine sera that can offer excellent value for basic cell culture, specialty research, and specific assays
Fluorescence Activated Cell Sorting (FACS) Beckman coulter cytoflex
Human alveolar adenocarcinoma A549 cells ATCC CRM-CCL-185
Human embryonic kidney (HEK) HEK-293T/17 cells ATCC CRL-11268 A versatile transfection reagent that has been shown to effectively transfect the widest variety of adherent and suspension cell lines
Inverted fluorescent biological microscope Olympus BX51-32P01-FLB3
Inverted light microscope Olympus CKX31-12PHP
Lipofectamine 2000 Transfection Reagent Invitrogen 11668019 Rapid, sensitive and precise probe-based qPCR detection and quantitation of target RNA targets.
Luna Universal Probe One-Step RT-qPCR Kit NEB E3006L Will withstand up to 14,000 RCF
RNase-/DNase-free Nonpyrogenic
Madin-Darby Canine Kidney (MDCK) cells ATCC CCL-34
MaxyClear Snaplock Microcentrifuge Tube (1.5 mL) Axygen MCT-150-C 33 mm, gamma sterilized
Millex-HV Syringe Filter Unit, 0.45 µm, PVDF Millipore SLHV033RS an improved Minimal Essential Medium (MEM) that allows for a reduction of Fetal Bovine Serum supplementation by at least 50% with no change in cell growth rate or morphology. Opti-MEM I medium is also recommended for use with cationic lipid transfection reagents, such as Lipofectamine reagent.
Opti-MEM I Reduced Serum Medium Gibco 11058021 The antibiotics penicillin and streptomycin are used to prevent bacterial contamination of cell cultures due to their effective combined action against gram-positive and gram-negative bacteria.
penicillin-streptomycin Gibco 15140122 Maximum RCF is 12,500 xg
Temperature range from -80 °C to 120 °C
RNase-/DNase-free
Sterile
PP Centrifuge Tubes (15 mL) Corning 430791 a stable and highly reactive serine protease
Proteinase K Beyotime ST532 Treated for optimal cell attachment
Sterilized by gamma radiation and certified nonpyrogenic
TC-treated Culture Dish (60mm) Corning 430166 Trypsin from bovine pancreas
TPCK Treated, essentially salt-free, lyophilized powder, ≥10,000 BAEE units/mg protein
TPCK-trypsin Sigma T1426 This liquid formulation of trypsin contains EDTA and phenol red. Gibco Trypsin-EDTA is made from trypsin powder, an irradiated mixture of proteases derived from porcine pancreas. Due to its digestive strength, trypsin is widely used for cell dissociation, routine cell culture passaging, and primary tissue dissociation. The trypsin concentration required for dissociation varies with cell type and experimental requirements.
Trypsin-EDTA (0.25%), phenol red Gibco 25200056

References

  1. Knipe, D. M., Howley, P. M. . Fields Virology (6th). , (2013).
  2. White, J. M., Delos, S. E., Brecher, M., Schornberg, K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Critical Reviews in Biochemistry and Molecular Biology. 43 (3), 189-219 (2008).
  3. Bright, R. A., et al. Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS One. 3 (1), 1501 (2008).
  4. Yang, J., et al. Reliability of pseudotyped influenza viral particles in neutralizing antibody detection. PLoS One. 9 (12), 113629 (2014).
  5. Wyatt, R., Sodroski, J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science. 280 (5371), 1884-1888 (1998).
  6. Joe, A. K., Foo, H. H., Kleeman, L., Levine, B. The transmembrane domains of Sindbis virus envelope glycoproteins induce cell death. Journal of Virology. 72 (5), 3935-3943 (1998).
  7. Albecka, A., Laine, R. F., Janssen, A. F., Kaminski, C. F., Crump, C. M. HSV-1 Glycoproteins Are Delivered to Virus Assembly Sites Through Dynamin-Dependent Endocytosis. Traffic. 17 (1), 21-39 (2016).
  8. Huang, A. S., Palma, E. L., Hewlett, N., Roizman, B. Pseudotype formation between enveloped RNA and DNA viruses. Nature. 252 (5485), 743-745 (1974).
  9. Rubin, H. Genetic Control of Cellular Susceptibility to Pseudotypes of Rous Sarcoma Virus. Virology. 26, 270-276 (1965).
  10. Steffen, I., Simmons, G. Pseudotyping Viral Vectors With Emerging Virus Envelope Proteins. Current Gene Therapy. 16 (1), 47-55 (2016).
  11. Bartosch, B., Dubuisson, J., Cosset, F. L. Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. Journal of Experimental Medicine. 197 (5), 633-642 (2003).
  12. Bian, T., Zhou, Y., Bi, S., Tan, W., Wang, Y. HCV envelope protein function is dependent on the peptides preceding the glycoproteins. Biochemical and Biophysical Research Communications. 378 (1), 118-122 (2009).
  13. Gudima, S., Meier, A., Dunbrack, R., Taylor, J., Bruss, V. Two potentially important elements of the hepatitis B virus large envelope protein are dispensable for the infectivity of hepatitis delta virus. Journal of Virology. 81 (8), 4343-4347 (2007).
  14. Yoshida, Y., Emi, N., Hamada, H. VSV-G-pseudotyped retroviral packaging through adenovirus-mediated inducible gene expression. Biochemical and Biophysical Research Communications. 232 (2), 379-382 (1997).
  15. Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., Yee, J. K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proceedings of the National Academy of Sciences of the United States of America. 90 (17), 8033-8037 (1993).
  16. Zhang, F., et al. Characterization of pseudoparticles paired with hemagglutinin and neuraminidase from highly pathogenic H5N1 influenza and avian influenza A (H7N9) viruses. Virus Research. 253, 20-27 (2018).
  17. Zhang, F., et al. Infectivity of Pseudotyped Particles Pairing Hemagglutinin of Highly Pathogenic Avian Influenza a H5N1 Virus with Neuraminidases of The 2009 Pandemic H1N1 and a Seasonal H3N2. Journal of Bioterrorism & Biodefense. 2, 104 (2011).
  18. Wu, J., et al. Characterization of neuraminidases from the highly pathogenic avian H5N1 and 2009 pandemic H1N1 influenza A viruses. PLoS One. 5 (12), 15825 (2010).
  19. Nefkens, I., et al. Hemagglutinin pseudotyped lentiviral particles: characterization of a new method for avian H5N1 influenza sero-diagnosis. Journal of Clinical Virology. 39 (1), 27-33 (2007).
  20. Zhang, Y., et al. Hemagglutinin and neuraminidase matching patterns of two influenza A virus strains related to the 1918 and 2009 global pandemics. Biochemical and Biophysical Research Communications. 387 (2), 405-408 (2009).
  21. Lin, X., et al. Oseltamivir boosts 2009 H1N1 virus infectivity in vitro. Biochemical and Biophysical Research Communications. 390 (4), 1305-1308 (2009).
  22. McKay, T., Patel, M., Pickles, R. J., Johnson, L. G., Olsen, J. C. Influenza M2 envelope protein augments avian influenza hemagglutinin pseudotyping of lentiviral vectors. Gene Therapy. 13 (8), 715-724 (2006).
  23. Pan, H., et al. Autophagy mediates avian influenza H5N1 pseudotyped particle-induced lung inflammation through NF-kappaB and p38 MAPK signaling pathways. American Journal of Physiology-Lung Cellular and Molecular Physiology. 306 (2), 183-195 (2014).
  24. Szecsi, J., et al. Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virology Journal. 3, 70 (2006).
  25. Garcia, J. M., Lagarde, N., Ma, E. S., de Jong, M. D., Peiris, J. S. Optimization and evaluation of an influenza A (H5) pseudotyped lentiviral particle-based serological assay. Journal of Clinical Virology. 47 (1), 29-33 (2010).
  26. Garcia, J. M., Lai, J. C. Production of influenza pseudotyped lentiviral particles and their use in influenza research and diagnosis: an update. Expert Review of Anti-infective Therapy. 9 (4), 443-455 (2011).
  27. Haynes, J. R., et al. Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge. Vaccine. 27 (4), 530-541 (2009).
  28. Schmeisser, F., et al. Production and characterization of mammalian virus-like particles from modified vaccinia virus Ankara vectors expressing influenza H5N1 hemagglutinin and neuraminidase. Vaccine. 30 (23), 3413-3422 (2012).
  29. Liu, Y. V., et al. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine. 29 (38), 6606-6613 (2011).
  30. Moeschler, S., Locher, S., Conzelmann, K. K., Kramer, B., Zimmer, G. Quantification of Lyssavirus-Neutralizing Antibodies Using Vesicular Stomatitis Virus Pseudotype Particles. Viruses. 8 (9), 254 (2016).
  31. Lai, A. L., Millet, J. K., Daniel, S., Freed, J. H., Whittaker, G. R. The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner. Journal of Molecular Biology. 429 (24), 3875-3892 (2017).
  32. Millet, J. K., et al. Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Research. 133, 1-8 (2016).
  33. Millet, J. K., et al. Production of Pseudotyped Particles to Study Highly Pathogenic Coronaviruses in a Biosafety Level 2 Setting. Journal of Visualized Experiments. (145), e59010 (2019).
  34. Ma, M., et al. Murine leukemia virus pseudotypes of La Crosse and Hantaan Bunyaviruses: a system for analysis of cell tropism. Virus Research. 64 (1), 23-32 (1999).
  35. Wool-Lewis, R. J., Bates, P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. Journal of Virology. 72 (4), 3155-3160 (1998).
  36. Chen, C. M., et al. Production and design of more effective avian replication-incompetent retroviral vectors. Developmental Biology. 214 (2), 370-384 (1999).
  37. Kaku, Y., et al. Second generation of pseudotype-based serum neutralization assay for Nipah virus antibodies: sensitive and high-throughput analysis utilizing secreted alkaline phosphatase. Journal of Virological Methods. 179 (1), 226-232 (2012).
  38. Rudiger, D., Kupke, S. Y., Laske, T., Zmora, P., Reichl, U. Multiscale modeling of influenza A virus replication in cell cultures predicts infection dynamics for highly different infection conditions. PLOS Computational Biology. 15 (2), 1006819 (2019).
  39. Petiot, E., et al. Influenza viruses production: Evaluation of a novel avian cell line DuckCelt(R)-T17. Vaccine. 36 (22), 3101-3111 (2018).
check_url/60663?article_type=t

Play Video

Cite This Article
Zhang, F., Wang, Y., Shang, X., Wang, S., Xiao, R., Zhou, H., Cai, L. Production of High-Titer Infectious Influenza Pseudotyped Particles with Envelope Glycoproteins from Highly Pathogenic H5N1 and Avian H7N9 Viruses. J. Vis. Exp. (155), e60663, doi:10.3791/60663 (2020).

View Video