Summary

在结肠直肠癌细胞的三维球体培养物中使用无细胞益生菌超常剂评估细胞死亡

Published: June 13, 2020
doi:

Summary

这里介绍了了解 乳酸杆菌 无细胞超高分子(LCFS)的抗癌作用的方法。结肠直肠癌细胞系显示在3D培养物中用LCFS治疗时细胞死亡。生成球体的过程可以根据脚手架进行优化,并且所呈现的分析方法可用于评估所涉及的信号通路。

Abstract

这份手稿描述了一个协议,评估癌细胞死亡的三维(3D)球形多细胞类型的癌细胞使用超分子从 乳酸杆菌发酵 细胞培养 被认为是益生菌培养物。使用 3D 培养物来测试 乳酸杆菌 无细胞超高分子 (LCFS) 比在 2D 单层测试更好,特别是因为 L. 发酵 可以在肠道内产生抗癌效果。 L. 发酵 超高分子被鉴定在3D培养条件下对几种结肠直肠癌(CRC)细胞具有增加的抗增殖作用。有趣的是,这些效应与培养模型密切相关,显示了 L.发酵 诱导癌细胞死亡的显著能力。稳定的球体来自不同的CRC(结肠直肠癌细胞),使用下面提出的协议。生成 3D 球体的这种协议节省时间且具有成本效益。该系统的开发是为了轻松研究LCFS在多种CRC球体中的抗癌作用。不出所料,在实验中用LCFS治疗的CRC球体强烈诱导细胞死亡,并表达由qRT-PCR、西侧印迹和FACS分析分析的特定凋亡分子标记。因此,该方法对于探索细胞生存能力和评估抗癌药物的疗效具有重要的价值。

Introduction

益生菌是肠道中最有利的微生物,可改善免疫平衡和宿主能量代谢1。酸杆菌双歧杆菌的益生菌是肠2、3中同类中最先进的。先前的研究表明,乳酸杆菌对包括结肠直肠癌在内的几种癌症有抑制和反促进作用。此外,益生菌可预防炎症性肠病、克罗恩病和溃疡性结肠炎5、6。然而,大多数益生菌研究都是在生长在固体表面的二维(2D)单层体中进行的。

人工培养系统缺乏环境特征,这对癌细胞来说是不自然的。为了克服这一局限性,开发了3维(3D)文化系统7、8。3D中的癌细胞在基本生物机制方面表现出改善,如细胞生存能力、增殖、形态、细胞细胞通信、药物敏感性和体内相关性9、10。此外,球体由多细胞类型的结肠直肠癌制成,并依赖于细胞-细胞相互作用和细胞外基质(ECM)11。我们先前的研究已经报告说,使用乳酸杆菌发酵产生的益生菌无细胞超纳坦(CFS)对结肠直肠癌(CRC)细胞12的3D培养物具有抗癌作用。我们建议CFS是测试3D球体12的益生菌效应的合适替代策略。

在这里,我们提出了一种方法,可以容纳多细胞类型的3D结肠直肠癌,用于分析益生菌无细胞超高分子(CFS)对几个3D结肠直肠癌模仿系统的治疗效果。这种方法为体外分析相关的益生菌和抗癌效果提供了手段。

Protocol

1. 细菌细胞培养和 无乳酸杆菌 无细胞超高分子(LCFS)的制备

注:步骤 1.2 – 1.9 在厌氧室中执行。

  1. 准备一个含有 L-西斯坦的人造黄油板和肉汤,并通过自动包装消毒。
  2. 在H2 厌氧室中预孵育MRS agar板,维持在37°C,含20ppm氧气。
  3. 解冻乳酸杆菌库存,并接种与细菌培养的阿加板(图1A(i))
  4. <l…

Representative Results

我们描述了从不同的结肠直肠癌细胞系中获取球状体的程序。需要补充甲基纤维素才能产生球状体。我们还介绍了LCFS制备方法,并提出了一个模型来研究益生菌与结肠直肠癌之间的相关性。球形形成和LCFS制备协议在图1A,B中示意图说明。如图2A所示,甲基纤维素浓度为0.6%,将癌细胞转化为紧凑的球体。这一结果表明,球状体可以通过使用…

Discussion

组织微环境,包括相邻细胞和细胞外基质(ECM),是组织生成的基础,在控制细胞生长和组织发育方面至关重要。然而,2D培养物有几个缺点,如细胞相互作用的中断,以及细胞形态的改变,细胞外环境,以及第14分区的方法。3D细胞培养系统经过严格研究,以更好地在体内繁殖效果,并已被证明是更精确的体外癌症检测系统15,16。<sup class="xre…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了”化学和辐射测量标准的制定”、授予编号为KRISS-202020-0003以及”生物材料和医学融合测量标准和技术的制定”的支持,赠款编号为KRISS-2020-GP2020-0004项目,由韩国标准与科学研究所资助。这项研究还得到了韩国科学和信息通信技术部(MSIT)、韩国国家研究基金会(NRF-2019M3A9F3065868)、卫生福利部(MOHW)、韩国卫生产业发展研究所(KHIDI、HI20C0558)、贸易、工业和能源部(MOTIE)和韩国工业技术评估研究所(KEIT,20009350)的支持。ORCID ID (何敏宇: 0000-0002-5951-2137:杜金康: 0000-0002-5924-9674:西尔·金: 0000-0003-3465-7118:李俊恩: 0000-0002-2495-1439:李吉娜: 0000-0002-3661-3701)。我们感谢张伍公园对实验的协助。

Materials


10% Mini-PROTEAN TGX Precast Protein Gels, 15-well, 15 µl
Biorad 4561036 Pkg of 10
Applied Biosystems MicroAmp Optical Adhesive Film Thermo Fisher Scientific 4311971 100 covers
10x transfer buffer Intron IBS-BT031A 1 L
10X Tris-Glycine (W/SDS) Intron IBS-BT014 1 L
Axygen 2.0 mL MaxyClear Snaplock Microcentrifuge Tube, Polypropylene, Clear, Nonsterile, 500 Tubes/Pack, 10 Packs/Case Corning SCT-200-C 500 Tubes/Pack, 10 Packs/Case
BD Difco Bacto Agar BD 214010 500 g
BD Difco Lactobacilli MRS Broth BD DF0881-17-5 500 g
CellTiter-Glo 3D Cell viability assay Promega G9681 100μl/assay in 96-well plates
Complete Protease Inhibitor Cocktail Sigma-Aldrich 11697498001 vial of 20 tablets
Corning Phosphate-Buffered Saline, 1X without calcium and magnesium, PH 7.4 ± 0.1 Corning 21-040-CV 500 mL
EMD Millipore Immobilon-P PVDF Transfer Membranes fisher Scientific IPVH00010 26.5cm x 3.75m roll; Pore Size: 0.45um
Falcon 5 mL Round Bottom Polystyrene Test Tube, with Cell Strainer Snap Cap Corning 352235 25/Pack, 500/Case
Fetal Bovine Serum, certified, US origin Thermo Fisher Scientific 16000044 500 mL
iScript cDNA Synthesis Kit, 25 x 20 µl rxns #1708890 Biorad 1708890 25 x 20 µL rxns
iTaq Universal SYBR Green Supermix Biorad 1725121 5 x 1 mL
Lactobacillus fermentum Korean Collection for Type Cultures KCTC 3112
L-Cysteine hydrochloride monohydrate Sigma-Aldrich C6852-25G 25 g
Methyl Cellulose (3500-5600mPa·s, 2% in Water at 20°C) TCI M0185 500 g
MicroAmp Fast Optical 96-Well Reaction Plate with Barcode, 0.1 mL Applied Biosystems 4346906 20 plates
Millex-GS Syringe Filter Unit, 0.22 µm, mixed cellulose esters, 33 mm, ethylene oxide sterilized Millipore SLGS033SB 250
PE Annexin V Apoptosis Detection Kit with 7-AAD Biolegend 640934 100 tests
Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Scientific 15140122 100 mL
Propidium Iodide Introgen P1304MP 100 mg
RIPA Lysis and Extraction Buffer Thermo Fisher Scientific 89901 250 mL
RNeasy Mini Kit (250) Qiagen 74106 250
RPMI-1640 Gibco 11875-119 500 mL
Trypsin-EDTA (0.25%), phenol red Thermo Fisher Scientific 25200056 100 mL
Name of Materials/Equipment/Software Company Catalog Number Comments/Description
anti – p-IκBα (B-9) Santa cruze sc-8404 200 µg/mL
anti-BclxL (H-5) Santa cruze sc-8392 200 µg/mL
anti-PARP 1 (C2-10) Santa cruze sc-53643 50 µl ascites
anti-β-actin (C4) Santa cruze sc-47778 200 µg/mL
BD FACSVerse BD Biosciences San Diego, CA, USA
Synergy HTX Multi-Mode Microplate Reader BioT S1LFA
CO2 incubator Thermo fisher HERAcell 150i
Conical tube 15 ml SPL 50015
Conical tube 50 ml SPL 50050
Corning Costar Ultra-Low Attachment Multiple Well Plate Sigma-Aldrich CLS7007
Corning Costar Ultra-Low Attachment Multiple Well Plate Sigma-Aldrich CLS3471
Costar 50 mL Reagent Reservoirs, 5/Bag, Sterile Costar 4870
Countess Cell Counting Chamber Slides Thermofisher C10228
Countess II FL Automated Cell Counter invitrogen AMQAF1000
EnSpire Multimode Reader Perkin Elmer Enspire 2300
Eppendorf Research Plus Multi Channel Pipette, 8-channel Eppendorf 3122000051
FlowJo software TreeStar Ashland, OR, USA
Goat Anti-Mouse IgG (H+L) Jackson immunoresearch 115-035-062 1.5 mL
Goat Anti-Rabbit IgG (H+L) Jackson immunoresearch 111-035-144 2.0 mL
GraphPad Prism 5 GraphPad Software Inc., San Diego, CA, USA
ImageJ NIH
ImageQuant LAS 4000 mini Fujifilm Tokyo, Japan
Incubated shaker Lab companion SIF-6000R
Multi Gauge Ver. 3.0, Fujifilm Tokyo, Japan
Optical density (OD)LAMBDA UV/Vis Spectrophotometers Perkin Elmer Waltham, MA, USA
Phase-contrast microscope Olympus Tokyo, Japan
SPL microcentrifuge tube 1.5mL SPL 60015
SPL Multi Channel Reservoirs, 12-Chs, PS, Sterile SPL 21012
StepOnePlus Real-Time PCR system Thermo Fisher Scientific Waltham, MA, USA
Vibra-Cell Ultrasonic Liquid Processors SONICS-vibra cell VC 505 500 Watt ultrasonic processor
Vinyl Anaerobic Chamber COY LAB PRODUCTS

References

  1. Bron, P. A., Van Baarlen, P., Kleerebezem, M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nature Reviews Microbiology. 10 (1), 66-78 (2012).
  2. Ruiz, L., Delgado, S., Ruas-Madiedo, P., Sánchez, B., Margolles, A. Bifidobacteria and their molecular communication with the immune system. Frontiers in Microbiology. 8, 1-9 (2017).
  3. Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R., Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nature Reviews Gastroenterology and Hepatology. 16 (10), 605-616 (2019).
  4. Pandey, K. R., Naik, S. R., Vakil, B. V. Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology. 52 (12), 7577-7587 (2015).
  5. Harish, K., Varghese, T. Probiotics in humans-evidence based review. Calicut Medical Journal. 4 (4), 3 (2006).
  6. Routy, B., et al. The gut microbiota influences anticancer immunosurveillance and general health. Nature Reviews Clinical Oncology. 15 (6), 382-396 (2018).
  7. Pampaloni, F., Reynaud, E. G., Stelzer, E. H. K. Most of the cell-based data-harvesting efforts that drive the integration of cell biology. Nature Reviews Molecular Cell Biology. 8 (10), 839-845 (2007).
  8. Shamir, E. R., Ewald, A. J. Three-dimensional organotypic culture: Experimental models of mammalian biology and disease. Nature Reviews Molecular Cell Biology. 15 (10), 647-664 (2014).
  9. Jong, B. K. Three-dimensional tissue culture models in cancer biology. Seminars in Cancer Biology. 15 (5), 365-377 (2005).
  10. Zanoni, M., et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Scientific Reports. 6, 19103 (2016).
  11. Anton, D., Burckel, H., Josset, E., Noel, G. Three-dimensional cell culture: A breakthrough in vivo. International Journal of Molecular Sciences. 16 (3), 5517-5527 (2015).
  12. Lee, J. E., et al. Characterization of the Anti-Cancer Activity of the Probiotic Bacterium Lactobacillus fermentum Using 2D vs. 3D Culture in Colorectal Cancer Cells. Biomolecules. 9 (10), 557 (2019).
  13. Koledova, Z. 3D cell culture: An introduction. Methods in Molecular Biology. 1612, (2017).
  14. Kapałczyńska, M., et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Archives of Medical Science. 14 (4), 910-919 (2018).
  15. Langhans, S. A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Frontiers in Pharmacology. 9, 1-14 (2018).
  16. Breslin, S., O’Driscoll, L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discovery Today. 18 (5-6), 240-249 (2013).
  17. Mazzocchi, A. R., Rajan, S. A. P., Votanopoulos, K. I., Hall, A. R., Skardal, A. In vitro patient-derived 3D mesothelioma tumor organoids facilitate patient-centric therapeutic screening. Scientific Reports. 8, 2886 (2018).
  18. Lv, D., Hu, Z., Lu, L., Lu, H., Xu, X. Three-dimensional cell culture: A powerful tool in tumor research and drug discovery. Oncology Letters. 14 (6), 6999-7010 (2017).
  19. Thirumala, S., Gimble, J., Devireddy, R. Methylcellulose Based Thermally Reversible Hydrogel System for Tissue Engineering Applications. Cells. 2 (3), 460-475 (2013).
  20. Chandrashekran, A., et al. Methylcellulose as a scaffold in the culture of liver-organoids for the potential of treating acute liver failure. Cell and Gene Therapy Insights. 4 (11), 1087-1103 (2018).
  21. Lee, W., Park, J. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds. Scientific Reports. 6, 1-11 (2016).
  22. Fan, H., Demirci, U., Chen, P. Emerging organoid models: Leaping forward in cancer research. Journal of Hematology and Oncology. 12 (1), 1-10 (2019).
  23. Drost, J., Clevers, H. Organoids in cancer research. Nature Reviews Cancer. 18 (7), 407-418 (2018).
  24. Liou, C. S., et al. A Metabolic Pathway for Activation of Dietary Glucosinolates by a Human Gut Symbiont. Cell. 180 (4), 717-728 (2020).
  25. Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G., Cryan, J. F. Microbiota and the social brain. Science. 366 (6465), 2016 (2019).
  26. Honda, K., Littman, D. R. The microbiota in adaptive immune homeostasis and disease. Nature. 535 (7610), 75-84 (2016).
  27. Bárcena, C., et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nature Medicine. 25 (8), 1234-1242 (2019).
  28. Michalovich, D., et al. Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. Nature Communications. 10, 5711 (2019).
  29. Ansaldo, E., et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 364 (6446), 1179-1184 (2019).
check_url/61285?article_type=t

Play Video

Cite This Article
Lee, J., Lee, J., Kim, S., Kang, D., Yoo, H. M. Evaluating Cell Death Using Cell-Free Supernatant of Probiotics in Three-Dimensional Spheroid Cultures of Colorectal Cancer Cells. J. Vis. Exp. (160), e61285, doi:10.3791/61285 (2020).

View Video