Summary

多孔铂基微波和宏管的盐模板合成方法

Published: May 18, 2020
doi:

Summary

提出了一种合成方法,通过化学还原不溶性盐针模板,获得多孔铂基大管和宏波带的方形横截面。

Abstract

高表面积多孔贵金属纳米材料的合成通常依赖于预制纳米粒子的耗时结合,然后是冲洗和超临界干燥步骤,往往导致机械易碎材料。本文提出了一种从不溶性盐针模板中合成纳米结构多孔多孔铂基宏管和宏波带的方法。相反带电的铂、铂和铜方形平面离子的组合导致不溶性盐针的快速形成。根据盐模板中金属离子的计量比和化学还原剂的选择,大管或宏束形成由熔融纳米粒子或纳米纤维组成的多孔纳米结构。通过X射线衍射和X射线光电子光谱确定,宏管和大束的元素组成由盐模板中金属离子的测量比控制。宏管和宏光纳米可压入自由立地薄膜中,电化学活性表面积通过电化学阻抗光谱和循环电压测量确定。这种合成方法演示了一种简单、相对快速的方法,实现了高表面积铂基大管和宏光带,具有可调谐纳米结构和元素成分,无需任何结合材料,可压入无固定薄膜。

Introduction

已开发出多种合成方法,以获得高表面积、多孔铂基材料,主要用于催化应用,包括燃料电池1。实现这种材料的一个策略是合成球体、立方体、电线和管2、3、4、5形式的单分散纳米粒子。为了将离散纳米粒子集成到功能装置的多孔结构中,聚合物粘结剂和碳添加剂通常需要6,7。此策略需要额外的处理步骤、时间,并可能导致质量特定性能下降,以及在扩展设备使用8期间聚集纳米粒子。另一种策略是推动合成纳米粒子的合合成金属凝胶,随后超临界干燥9,10,11。虽然贵金属的溶胶凝胶合成方法的进步将凝胶时间从数周缩短到数小时或几分钟,但由此产生的单体往往在机械上脆弱,妨碍了其在装置12中的实际应用。

铂合金和多金属三维多孔纳米结构为催化特异性提供可调谐性,并解决铂金13、14的高成本和相对稀缺性问题。虽然有许多关于铂铂15、16和17、18、19离散纳米结构以及其他合金组合20的报道,但用于实现三维铂合金和多金属结构解决方案技术的综合策略很少。

最近,我们展示了使用高浓度盐溶液和还原剂,以迅速产生黄金,铂,和铂金属凝胶21,22。高浓度盐溶液和还原剂也用于合成生物聚合物贵金属复合材料使用明胶,纤维素,和丝绸23,24,25,26。不溶性盐是可减少的离子浓度最高的,肖和同事用来证明二维金属氧化物27、28的合成。在高浓度盐溶液中对多孔贵金属气凝胶和复合材料进行示范,并利用不溶性盐的高密度,我们利用马格努斯的盐和衍生物作为形状模板,合成多孔贵金属大管和微孔29、30、31、32。

马格努斯的盐组装从添加相反充电的方形平面铂离子 [PtCl4]2 – 和[Pt(NH3]4=2 = 33。以类似的方式,Vauquelin的盐从相反充电的铂离子组合中形成[PdCl4]2- 和[Pd(NH3)4=2= 34。前体盐浓度为100 mM,产生的盐晶体形成10至100微米的针,平方宽度约为100纳米至3μm。虽然盐模板是电荷中性,改变马格努斯的盐衍生物在离子物种之间的测量,包括[Cu(NH3)4+2],允许控制由此产生的金属比率降低。离子的组合,以及化学还原剂的选择,导致宏管或宏束与方形横截面和多孔纳米结构组成的融合纳米粒子或纳米纤维。磁管和宏光纳米也被压入自由立立膜,电化学活性表面积通过电化学阻抗光谱和循环电压测量确定。盐模板方法用于合成铂金大管29,铂金-铂宏波带31,并努力降低材料成本,并调整催化活性,结合铜,铜铂巨管32。盐模板方法也演示了Au-Pd和Au-Pd-Cu二进制和三元金属宏管和纳米泡30。

在这里,我们提出了一种方法,从不溶性马格努斯的盐针模板29,31,32合成铂金,铂金铜-铂,和铜-铂双金属多孔宏和宏波。盐针模板中离子组测定的控制可控制化学还原后产生的金属比,并可以通过 X 射线衍射测量和 X 射线光电子光谱法进行验证。由此产生的宏管和宏带可以组装并形成具有手压的立式薄膜。所得薄膜表现出高电化学活性表面积 (ECSA),由 H2SO4和 KCl 电解质中的电化学阻抗光谱和环伏测量测定。此方法提供了一种合成途径,以快速和可扩展的方式控制铂基金属成分、孔隙度和纳米结构,这些方法可推广到更广泛的盐模板中。

Protocol

注意:使用前请咨询所有相关的化学品安全数据表 (SDS)。在进行化学反应时,请使用适当的安全做法,包括使用烟罩和个人防护设备。电化学还原过程中氢气的快速演化会导致反应管中产生高压,导致瓶盖弹出,溶液喷出。确保反应管盖保持协议中指定的打开状态。在烟罩中进行所有电化学还原。 1. 马格努斯的盐衍生物模板制备 注:由于长时间储存会?…

Representative Results

添加相反带电的方形平面贵金属离子,导致高纵横比盐晶体几乎瞬时形成。在图1中,方形平面离子的线性堆叠以示意图显示,偏振光学显微镜图像显示盐针的细米长为10到100秒。所有铂、铂和铜盐溶液的浓度为 100 mM。虽然盐针模板是电荷中性,因为总阳离子和阳离子电荷相等,但结果盐针的测定度可以随离子的三级组合而变化。例如,铂金铂盐模板的计量与Pt2+:P d<s…

Discussion

这种合成方法演示了一种简单、相对快速的方法,实现了高表面积铂基大管和宏光带,具有可调谐纳米结构和元素成分,无需任何结合材料,可压入无固定薄膜。使用Magnus的盐衍生物作为高纵横比针形模板,通过盐模板的化学测量控制产生的金属成分,并结合选择还原剂,控制大管和宏波孔多孔侧壁和横截面结构的纳米结构。合成方法可以通过更改用于形成模板的盐比而变化:Pt2+:P(t 2-,Pt</…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作由美国军事学院学院发展研究基金赠款资助。作者感谢美国陆军战斗力发展指挥部的克里斯托弗·海恩斯博士的帮助。作者还要感谢约书亚·莫勒博士在纽约沃特夫利特的美国陆军CCDC-军备中心使用FIB-SEM。

Materials

50 mL Conical Tubes Corning Costar Corp. 430290
Ag/AgCl Reference Electrode BASi MF-2052
Cu(NH3)4SO4Ÿ•H2O Sigma-Aldrich 10380-29-7
dimethylamine borane (DMAB) Sigma-Aldrich 74-94-2
K2PtCl4 Sigma-Aldrich 10025-99-7
Miccrostop Lacquer Tober Chemical Division NA
Na2PdCl4 Sigma-Aldrich 13820-40-1
NaBH4 Sigma-Aldrich 16940-66-2
Polarized Optical Microscope AmScope PZ300JC
Potentiostat Biologic-USA VMP-3 Electrochemical analysis-EIS, CV
Pt wire electrode BASi MF-4130
Pt(NH3)4Cl2Ÿ•H2O Sigma-Aldrich 13933-31-8
Scanning Electron Microscope FEI Helios 600 EDS performed with this SEM
Shelf Rocker Thermo Scientific Vari-Mix™ Platform Rocker
Snap Cap Microcentrifuge Tubes, 1.7 mL Cole Parmer UX-06333-60
X-ray diffractometer PanAlytical Empyrean X-ray diffractometry
X-ray photoelectron spectrometer ULVAC PHI – Physical Electronics VersaProbe III

References

  1. Chen, A., Holt-Hindle, P. Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications. Chemical Reviews. 110 (6), 3767-3804 (2010).
  2. Narayanan, R., El-Sayed, M. A. Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution. Nano Letters. 4 (7), 1343-1348 (2004).
  3. Wang, C., Daimon, H., Onodera, T., Koda, T., Sun, S. A General Approach to the Size and Shape-Controlled Synthesis of Platinum Nanoparticles and Their Catalytic Reduction of Oxygen. Angewandte Chemie International Edition. 47 (19), 3588-3591 (2008).
  4. Song, Y., et al. Synthesis of Platinum Nanowire Networks Using a Soft Template. Nano Letters. 7 (12), 3650-3655 (2007).
  5. Liu, L., Yoo, S. H., Park, S. Synthesis of Vertically Aligned Hollow Platinum Nanotubes with Single Crystalline Nanoflakes. Chemistry of Materials. 22 (8), 2681-2684 (2010).
  6. Ehrburger, P., Mahajan, O. P., Walker, P. L. Carbon as a support for catalysts: I. Effect of surface heterogeneity of carbon on dispersion of platinum. Journal of Catalysis. 43 (1), 61-67 (1976).
  7. Liu, H. S., et al. A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources. 155 (2), 95-110 (2006).
  8. Zhang, S., et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. Journal of Power Sources. 194 (2), 588-600 (2009).
  9. Wei, L., et al. Bimetallic Aerogels: High-Performance Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie International Edition. 52 (37), 9849-9852 (2013).
  10. Liu, W., et al. Noble Metal Aerogels-Synthesis, Characterization, and Application as Electrocatalysts. Accounts of Chemical Research. 48 (2), 154-162 (2015).
  11. Naskar, S., et al. Porous Aerogels from Shape-Controlled Metal Nanoparticles Directly from Nonpolar Colloidal Solution. Chemistry of Materials. 29 (21), 9208-9217 (2017).
  12. Du, R., et al. Emerging Noble Metal Aerogels: State of the Art and a Look Forward. Matter. 1 (1), 39-56 (2019).
  13. Qiu, X., et al. Template-engaged synthesis of hollow porous platinum–palladium alloy nanospheres for efficient methanol electro-oxidation. Journal of Power Sources. 302, 195-201 (2016).
  14. Yamauchi, Y., et al. Electrochemical Synthesis of Mesoporous Pt–Au Binary Alloys with Tunable Compositions for Enhancement of Electrochemical Performance. Journal of the American Chemical Society. 134 (11), 5100-5109 (2012).
  15. Lim, B., et al. Twin-Induced Growth of Palladium–Platinum Alloy Nanocrystals. Angewandte Chemie International Edition. 48 (34), 6304-6308 (2009).
  16. Lim, B., et al. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science. 324 (5932), 1302-1305 (2009).
  17. Han, L., et al. A seed-mediated approach to the morphology-controlled synthesis of bimetallic copper-platinum alloy nanoparticles with enhanced electrocatalytic performance for the methanol oxidation reaction. Journal of Power Sources. 286, 488-494 (2015).
  18. Xu, C., et al. Nanotubular Mesoporous PdCu Bimetallic Electrocatalysts toward Oxygen Reduction Reaction. Chemistry of Materials. 21 (14), 3110-3116 (2009).
  19. Xu, D., et al. Solution-Based Evolution and Enhanced Methanol Oxidation Activity of Monodisperse Platinum-Copper Nanocubes. Angewandte Chemie International Edition. 48 (23), 4217-4221 (2009).
  20. Stamenkovic, V. R., et al. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science. 315 (5811), 493-497 (2007).
  21. Burpo, F. J., et al. Direct solution-based reduction synthesis of Au, Pd, and Pt aerogels. Journal of Materials Research. 32 (22), 4153-4165 (2017).
  22. Burpo, F. J., et al. A Rapid Synthesis Method for Au, Pd, and Pt Aerogels Via Direct Solution-Based Reduction. Journal of Visualized Experiments. (136), e57875 (2018).
  23. Burpo, F. J., Mitropoulos, A. N., Nagelli, E. A., Ryu, M. Y., Palmer, J. L. Gelatin biotemplated platinum aerogels. MRS Advances. , 1-6 (2018).
  24. Burpo, F., et al. Cellulose Nanofiber Biotemplated Palladium Composite Aerogels. Molecules. 23 (6), 1405 (2018).
  25. Burpo, F. J., et al. Synthesis Method for Cellulose Nanofiber Biotemplated Palladium Composite Aerogels. Journal of Visualized Experiments. (147), e59176 (2019).
  26. Mitropoulos, A. N., et al. Metal Composite Porous Silk Fibroin Aerogel Fibers. Materials. 12 (6), 894 (2019).
  27. Xiao, X., et al. Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides. ACS Nano. 11 (2), 2180-2186 (2017).
  28. Xiao, X., et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications. 7, 11296 (2016).
  29. Burpo, F. J., et al. Salt-Templated Hierarchically Porous Platinum Macrotube Synthesis. Chemistry Select. 3 (16), 4542-4546 (2018).
  30. Burpo, F., Nagelli, E., Morris, L., Woronowicz, K., Mitropoulos, A. Salt-Mediated Au-Cu Nanofoam and Au-Cu-Pd Porous Macrobeam Synthesis. Molecules. 23 (7), 1701 (2018).
  31. Burpo, F. J., et al. Salt-templated platinum-palladium porous macrobeam synthesis. MRS Communications. 9 (1), 280-287 (2019).
  32. Burpo, F. J., et al. Salt-Templated Platinum-Copper Porous Macrobeams for Ethanol Oxidation. Catalysts. 9 (8), 662 (2019).
  33. Magnus, G. Ueber einige Verbindungen des Platinchlorürs. Annalen der Physik. 90 (10), 239-242 (1828).
  34. Vauquelin, N. L. Memoire sur le Palladium et le Rhodium. Annales de Chimie. 88, 167-198 (1813).
  35. Bremi, J., et al. From Vauquelin’s and Magnus’ Salts to Gels, Uniaxially Oriented Films, and Fibers: Synthesis, Characterization, and Properties of Tetrakis(1-aminoalkane)metal(II) Tetrachlorometalates(II). Chemistry of Materials. 11 (4), 977-994 (1999).
  36. Bremi, J., Caseri, W., Smith, P. A new compound derived from Magnus’ green salt: solid state structure and evidence for platinum chains in solution. Journal of Materials Chemistry. 11 (10), 2593-2596 (2001).
  37. Caseri, W. Derivatives of Magnus’ Green Salt. Platinum Metals Review. 48 (3), 91 (2004).

Play Video

Cite This Article
Burpo, F. J., Losch, A. R., Nagelli, E. A., Winter, S. J., Bartolucci, S. F., McClure, J. P., Baker, D. R., Bui, J. K., Burns, A. R., O’Brien, S. F., Forcherio, G. T., Aikin, B. R., Healy, K. M., Remondelli, M. H., Mitropoulos, A. N., Richardson, L., Wickiser, J. K., Chu, D. D. A Salt-Templated Synthesis Method for Porous Platinum-based Macrobeams and Macrotubes. J. Vis. Exp. (159), e61395, doi:10.3791/61395 (2020).

View Video