Summary

样品室光片荧光显微镜中多个昆虫胚胎的同步实时成像

Published: September 09, 2020
doi:

Summary

光片荧光显微镜是发育生物学中最有价值的工具。比较研究中的一个主要问题是环境差异。我们的协议描述了多个标本同时进行实时成像的实验框架,因此,主动解决这个问题。

Abstract

基于光片的荧光显微镜为研究多个生物相关尺度上的复杂过程提供了有效的解决方案。样品室设置是发育生物学的最佳选择,这些设置是专门为保持标本的三维完整性而设计的,通常具有样品旋转功能。例如,它们被用来记录果蝇 德罗索菲拉褪黑麦加斯特 和红面粉甲虫 三宝座的整个胚胎形态。然而,许多可用的活成像协议只为单个胚胎提供实验框架。特别是对于比较研究,这种方法不方便,因为顺序成像标本受环境方差的影响。此外,这限制了在给定时间内可以检测的标本数量。我们为同步实时成像提供一个实验框架,以增加基于样品室的设置的吞吐量,从而确保所有标本的类似环境条件。首先,我们为光片荧光显微镜提供校准指南。其次,我们提出了一种与样本旋转相容的多个胚胎的安装方法。第三,我们提供示范性的三维D 罗索菲拉活成像数据集,为此,我们将三条转基因线与荧光标记的核以及 三聚氰胺并列,为此我们比较了携带相同转基因但在不同基因组位置的三条转基因子系的性能。我们的协议是专门为比较研究设计的,因为它主动解决环境方差,这总是存在于连续实时成像中。这对于定量分析和异常表型的定性尤其重要,例如,从淘汰实验中产生的表型。此外,它增加了总吞吐量,当光片荧光显微镜的获取有限时,这非常方便。最后,建议的安装方法可以适应其他昆虫物种和进一步的模型生物,如斑马鱼,基本上没有优化的努力。

Introduction

荧光显微镜是生命科学中最重要的成像技术之一,特别是在细胞和发育生物学方面。在共焦荧光显微镜1中,这是自20世纪90年代中期以来最先进的三维荧光成像技术,同一镜头用于荧光激发和发射光检测。照明激光束激发照明/检测轴沿线的所有荧光素,在通过针孔检测之前,对各自的对焦信号进行区分。因此,对于每个二维图像,整个标本都会被照亮。因此,对于每个三维图像,即一叠空间连续的二维图像,整个标本被照亮几十到几百倍2,这促进光漂白和光毒性3。

近二十年前,光片技术4 成为三维荧光成像的有前途的替代品,成为发展生物学5的宝贵工具。在这种方法中,照明和检测是脱钩的。照明透镜用于在垂直排列的检测透镜的焦平面内生成深度只有几微米的光片。因此,对于每个二维图像,只有焦平面周围的细平面体积被照亮。因此,对于每个三维图像,整个标本只被照亮一次,这强烈地降低了光漂白和光毒性6。因此,光片荧光显微镜(LSFMs)为研究多个生物相关尺度的复杂过程提供了有效的解决方案,因此,在发育生物学中具有特殊价值,在亚细胞水平上必须分析高达几毫米的标本。

从历史上看,LSFM一直以样品室为基础,即7、8。在这些设置中,照明 (x) 和检测 (z) 轴通常垂直于重力轴 (y) 排列。样品室提供充足的实验自由。首先,它们提供大型成像缓冲能力,这反过来又便于使用灌注系统控制环境,例如维持特定温度9或应用生化应激器。此外,他们支持定制安装方法10,根据各自的实验需要量身定做,同时保持三维,在某些情况下动态11,标本的完整性。此外,基于样品室的设置通常配备了旋转功能,用于将标本围绕 y 轴旋转,从而沿两个、四个甚至多个方向对标本进行成像。由于常用模型生物的胚胎在显微镜中,沿腹腔多面、横向和/或前后体轴的连续成像规模相对较大,具有更全面的表示性。这允许长期跟踪沿着复杂的三维迁移路径12,13移动的细胞。

光片荧光显微镜已广泛应用于研究甲流的胚胎形态,系统地研究14、15,并特别注重生物物理方面的发展。例如,它被用来收集高分辨率的形态遗传学数据,以检测在细菌带拉长16期间内皮体入侵和轴延伸之间的生物力学联系,并进一步将复杂的细胞流与气喘17期间的力生成模式联系起来。它还与其他最先进的技术相结合,例如光遗传学,以研究在表皮18前后模式期间对Wnt信号的调节。

然而,只研究一个物种并不能提供对发展演变的见解。为了了解植物学背景下的胚胎生成,对替代昆虫模型生物进行了深入的研究。其中一个最全面调查的物种是红面粉甲虫三宝座,一种经济上相关的储存谷物害虫19,其胚胎形态也已经系统地与LSFM20成像。这两个物种的胚胎形态在几个方面差异显著,如分割模式21,以及胚胎外膜22的形成和降解。使用 LSFM 对后一个方面进行了广泛的分析。例如,已经证明,血清,一种胚胎外组织,包围和保护三叶草胚胎免受各种危害,其胚胎生成的更好部分23,24,也作为致命的遗传“驱动因素”,为自己的提取过程在回旋关闭25。此外,已经证明,在气喘期间,爆炸体的一个特定区域仍然锚定在玻璃膜上,以产生不对称的组织运动26,并在此观察之后,区域化组织流化允许细胞在塞罗萨窗口关闭27期间按顺序离开血清边缘。

在上述所有与嗜血杆菌三叶草相关的研究中,都使用了基于样品室的LSFM。在大多数情况下,胚胎是沿着多个方向记录的,使用样品旋转功能。虽然没有明确说明,但可以假定它们是单独记录的,因此在连续的实时成像测定中彼此独立,类似于我们之前在Tribolium20,28上的工作。在某些情况下,这种方法是可以接受的,但在定量比较方法中,环境差异可能会扭曲结果。例如,人们早就知道昆虫的发育速度取决于温度但最近的一项研究进一步表明,在德罗索菲拉,温度也可能影响30型摩尔磷的浓度。因此,如果胚胎生成的某些特征,例如细胞的动态比例、分裂率和迁移速度,应精确量化,则需要充分重复,而不需要环境方差。这最大限度地减少了标准偏差和标准错误,这反过来又有利于与其他,甚至只是略有不同的实验条件并列。

但是,基于样品室的 LSFM 主要针对高含量而非高吞吐量检测而设计。与共焦显微镜不同,该显微镜通常配备了用于显微镜滑梯、培养皿和井板的标准化夹紧机制,几乎所有基于样品室的 LSFM 都使用基于圆柱形的夹紧机制。这些机制是针对定制样品持有人,是旋转兼容的,以及非侵入性的10,但通常不设计为多个标本20,31,32。两个或两个以上胚胎同时进行活成像的框架,其中基于样品的室设置的优点不会受到损害,解决了环境方差问题,从而增加了LSFM用于比较研究的价值。

在我们的协议中,我们提出了一个实验框架,用于在基于样品室的LSFM(图1A)中进行比较活成像,其中y轴被用作”堆叠”胚胎的选项。首先,我们为基于样品室的 LSFM 提供荧光微球校准指南,对于缺乏校准辅助的仪器来说,这一点尤为重要。其次,我们描述了基于蜘蛛网支架28(图1B)的多个胚胎的安装方法,该方法与样本旋转兼容,从而允许沿多个方向同时成像多个样本(图1C)。几个胚胎在薄的糖膜上对齐,在插入样品室后,通过光片连续移动以获取三维图像。第三,我们为德罗索菲拉三宝莲提供三个示范性的实时成像数据集。对于前者,我们将转基因线与荧光标记的核并列。对于后者,我们比较携带相同转基因的转基因子线的性能,但在不同的基因组位置。最后,我们讨论了平行化对比较活成像和环境方差33的重要性,讨论了我们的实验框架的吞吐量限制,并评估了我们对其他模型生物体方法的适应情况。

Protocol

1. 筹备工作 为适合科学问题的 LSFM 选择照明镜头/检测镜头/相机组合,并设置显微镜。视场的大小是相机芯片大小的商量和检测镜头的放大倍数。照明透镜应选择,以便整个视野被大致平面光片34覆盖。 表1中列出了三个推荐组合。 要准备阿加罗斯别名和检索菜肴,请将 2 克低熔性蔗糖加入 200 mL 高压自来水中,并在 600-800 W 的微波炉中加热混合物,直…

Representative Results

我们的协议描述了基于样品室 LSFMs 的比较荧光实时成像的实验框架。例如,该框架可用于并列两个或两个以上物种的胚胎,(ii) 一个或多个基因被击倒的线状胚胎加上野生型对照组:(iii) 同一转基因系的多个胚胎:(iv) 来自不同转基因系的胚胎,或(v) 携带相同转基因基因的子线胚胎,但在不同的基因组位置。在本节中,我们为最后两个方案提供示例。 在我们的第?…

Discussion

LSFM 的独家应用领域之一是发育生物学。在这个学科中,观察活的标本很重要,否则无法动态地描述形态遗传过程。此处描述的基于样品室 LSFM 的同步实时成像实验框架很方便,原因有二。

环境方差是连续实时成像中不可避免的,可以主动解决。在与昆虫胚胎相关的活成像中,我们看到以下易感性。在胚胎采集时,卵子收集培养可能有不同的年龄。在 德罗索菲拉,已?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢安永 H. K. Stelzer 有机会利用他的资源,以及他对手稿的宝贵评论,安妮塔·安德尔对 Tribolium 现场成像的支持,斯文·普拉斯提供技术支持,以及伊兰·戴维斯、妮可·格里德和杰罗德·舒比格通过布卢明顿股票中心分享他们的转基因 Drosophila 生产线。

Materials

6-well plate Orange Scientific 4430500  
24-well plate Orange Scientific 4430300 Only for live imaging involving Tribolium
35-mm Ø Petri dish Fisher Scientific 153066 Only for live imaging involving Drosophila.
90-mm Ø Petri dish Fisher Scientific L9004575
100-µm mesh size cell strainer BD Biosciences 352360
250-µm mesh size sieve VWR International 200.025.222-038 Only for live imaging involving Tribolium
300-µm mesh size sieve VWR International 200.025.222-040 Only for live imaging involving Tribolium
710-µm mesh size sieve VWR International 200.025.222-050 Only for live imaging involving Tribolium
800-µm mesh size sieve VWR International 200.025.222-051 Only for live imaging involving Tribolium
405 fine wheat flour Demeter e.V. SP061006 Only for live imaging involving Tribolium
commercially available Drosophila medium Genesee Scientific 66-115 Only for live imaging involving Drosophila / Custom-made Drosophila medium may also be used
fluorescent microspheres, 1.0 µm Ø Thermo Fisher Scientific T7282
inactive dry yeast Genesee Scientific 62-108 Only for live imaging involving Tribolium
low-melt agarose Carl Roth 6351.2
narrow vials Genesee Scientific 32-109 Only for live imaging involving Drosophila
small paint brush VWR International 149-2121
sodium hypochlorite (NaOCl), ~12% active Cl Carl Roth 9062.3 Caution: sodium hypochlorite is corrosive
whole wheat flour Demeter e.V. SP061036 Only for live imaging involving Tribolium / United Kingdom: wholemeal flour
wide vials Genesee Scientific 32-110 Only for live imaging involving Drosophila

References

  1. St Croix, C. M., Shand, S. H., Watkins, S. C. Confocal microscopy: comparisons, applications, and problems. Biotechniques. 39 (6), 2-5 (2005).
  2. Jonkman, J., Brown, C. M. Any way you slice it-A comparison of confocal microscopy techniques. Journal of Biomolecular Techiques. 26 (2), 54-65 (2015).
  3. Icha, J., Weber, M., Waters, J. C., Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays. 39, 1700003 (2017).
  4. Strobl, F., Schmitz, A., Stelzer, E. H. K. Improving your four-dimensional image: traveling through a decade of light-sheet-based fluorescence microscopy research. Nature Protocols. 12, 1103-1109 (2017).
  5. Weber, M., Huisken, J. Light sheet microscopy for real-time developmental biology. Current Opinion in Genetics and Development. 21, 566-572 (2011).
  6. Stelzer, E. H. K. Light-sheet fluorescence microscopy for quantitative biology. Nature Methods. 12, 23-26 (2015).
  7. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 305, 1007-1009 (2004).
  8. Keller, P. J., Schmidt, A. D., Wittbrodt, J., Stelzer, E. H. K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science. 322, 1065-1069 (2008).
  9. Strobl, F., Schmitz, A., Stelzer, E. H. K. Live imaging of Tribolium castaneum embryonic development using light-sheet-based fluorescence microscopy. Nature Protocols. 10, 1486-1507 (2015).
  10. Reynaud, E. G., Peychl, J., Huisken, J., Tomancak, P. Guide to light-sheet microscopy for adventurous biologists. Nature Methods. 12, 30-34 (2015).
  11. Kaufmann, A., Mickoleit, M., Weber, M., Huisken, J. Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope. Development. 139, 3242-3247 (2012).
  12. Stegmaier, J., et al. Real-Time Three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Developmental Cell. 36, 225-240 (2016).
  13. Wan, Y., et al. Single-cell reconstruction of emerging population activity in an entire developing circuit. Cell. 2, 355-372 (2019).
  14. Chhetri, R. K., et al. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nature Methods. 12, 1171-1178 (2015).
  15. Royer, L. A., et al. Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nature Biotechnology. 34 (12), 1267-1278 (2016).
  16. Lye, C. M., et al. Mechanical coupling between endoderm invagination and axis extension in Drosophila. PLoS Biology. 13, 1002292 (2015).
  17. Streichan, S. J., Lefebvre, M. F., Noll, N., Wieschaus, E. F., Shraiman, B. I. Global morphogenetic flow is accurately predicted by the spatial distribution of myosin motors. Elife. 7, 27454 (2018).
  18. Kaur, P., Saunders, T. E., Tolwinski, N. S. Coupling optogenetics and light-sheet microscopy, a method to study Wnt signaling during embryogenesis. Science Reports. 7 (1), 16636 (2017).
  19. Richards, S., et al. The genome of the model beetle and pest Tribolium castaneum. Nature. 452, 949-955 (2008).
  20. Strobl, F., Stelzer, E. H. K. Non-invasive long-term fluorescence live imaging of Tribolium castaneum embryos. Development. 141, 2331-2338 (2014).
  21. El-Sherif, E., Averof, M., Brown, S. J. A segmentation clock operating in blastoderm and germband stages of Tribolium development. Development. 139 (23), 4341-4346 (2012).
  22. Schmidt-Ott, U., Kwan, C. W. Morphogenetic functions of extraembryonic membranes in insects. Current Opinion in Insect Science. 13, 86-92 (2016).
  23. Jacobs, C. G. C., Rezende, G. L., Lamers, G. E. M., vander Zee, M. The extraembryonic serosa protects the insect egg against desiccation. Proceedings in Biological Sciences. 280, 20131082 (2013).
  24. Jacobs, C. G. C., Spaink, H. P., vander Zee, M. The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response. Elife. 3, 04111 (2014).
  25. Hilbrant, M., Horn, T., Koelzer, S., Panfilio, K. A. The beetle amnion and serosa functionally interact as apposed epithelia. Elife. 5, 13834 (2016).
  26. Münster, S., et al. Attachment of the blastoderm to the vitelline envelope affects gastrulation of insects. Nature. 568 (7752), 395-399 (2019).
  27. Jain, A., et al. Regionalized tissue fluidization by an actomyosin cable is required for epithelial gap closure during insect gastrulation. bioRxiv. , 744193 (2019).
  28. Strobl, F., Klees, S., Stelzer, E. H. K. Light sheet-based fluorescence microscopy of living or fixed and stained Tribolium castaneum embryos. Journal of Visualized Experiments. , e55629 (2017).
  29. Powsner, L. The effects of temperature on the durations of the developmental stages of Drosophila melanogaster. Physiological Zoology. 8, 474-520 (1935).
  30. Cheung, D., Ma, J. Probing the impact of temperature on molecular events in a developmental system. Science Reports. 5, 1-12 (2015).
  31. Keller, P. J., Schmidt, A. D., Wittbrodt, J., Stelzer, E. H. K. Digital scanned laser light-sheet fluorescence microscopy (DSLM) of zebrafish and Drosophila embryonic development. Cold Spring Harbor Protocols. 2011, 1235-1243 (2011).
  32. Royer, L. A., Lemon, W. C., Chhetri, R. K., Keller, P. J. A practical guide to adaptive light-sheet microscopy. Nature Protocols. 13, 2462-2500 (2018).
  33. Mcdonald, J. H. . Handbook of Biological Statistics, 3rd edition. , (2013).
  34. Engelbrecht, C. J., Stelzer, E. H. Resolution enhancement in a light-sheet-based microscope (SPIM). Optics Letters. 31, 1477-1479 (2006).
  35. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9, 676-682 (2012).
  36. Strobl, F., Anderl, A., Stelzer, E. H. A universal vector concept for a direct genotyping of transgenic organisms and a systematic creation of homozygous lines. Elife. 7, 31677 (2018).
  37. Shaner, N. C., Steinbach, P. A., Tsien, R. Y. A guide to choosing fluorescent proteins. Nature Methods. 2, 905-909 (2005).
  38. Riedl, J., et al. Lifeact: a versatile marker to visualize F-actin. Nature Methods. 5, 605-607 (2008).
  39. vander Zee, M., Berns, N., Roth, S. Distinct functions of the Tribolium zerknüllt genes in serosa specification and dorsal closure. Current Biology. 15, 624-636 (2005).
  40. Boothe, T., et al. A tunable refractive index matching medium for live imaging cells, tissues and model organisms. Elife. , 27240 (2017).
  41. Strobl, F., Stelzer, E. H. Long-term fluorescence live imaging of Tribolium castaneum embryos: principles, resources, scientific challenges and the comparative approach. Current Opinion in Insect Science. 18, 17-26 (2016).
  42. Sarrazin, A. F., Peel, A. D., Averof, M. A Segmentation Clock with Two-Segment Periodicity in Insects. Science. 336, 338-341 (2012).
  43. Macaya, C. C., Saavedra, P. E., Cepeda, R. E., Nuñez, V. A., Sarrazin, A. F. A Tribolium castaneum whole-embryo culture protocol for studying the molecular mechanisms and morphogenetic movements involved in insect development. Development Genes and Evolution. 226, 53-61 (2016).
  44. He, B., et al. An ancestral apical brain region contributes to the central complex under the control of foxQ2 in the beetle Tribolium. Elife. 8, 49065 (2019).
  45. Millery, P. B., et al. The song of the old mother: Reproductive senescence in female drosophila. Fly Austin. 8 (3), 127-129 (2014).
  46. Clarkson, R. M., Moule, A. J., Podlich, H. M. The shelf-life of sodium hypochlorite irrigating solutions. Australian Dental Journal. 46 (4), 269-276 (2001).
  47. Campos-Ortega, J. A., Hartenstein, V. . The Embryonic Development of Drosophila melanogaster, 2nd edition. , (1997).
  48. Brown, S. J., et al. The red flour beetle, Tribolium castaneum (Coleoptera): A model for studies of development and pest biology. Cold Spring Harbor Protocols. 4, (2009).
  49. Wu, Y., et al. Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proceedings of the National Academy of Science U.S.A. 108 (43), 17708-17713 (2011).
  50. Kumar, A., et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nature Protocol. 9, 2555 (2014).
  51. McGorty, R., et al. Open-top selective plane illumination microscope for conventionally mounted specimens. Optics Express. 23, 16142-16153 (2015).
  52. Ponjavic, A., Ye, Y., Laue, E., Lee, S. F., Klenerman, D. Sensitive light-sheet microscopy in multiwell plates using an AFM cantilever. Biomedical Optics Express. 9 (12), 5863-5880 (2018).
  53. Pietzsch, T., Saalfeld, S., Preibisch, S., Tomancak, P. BigDataViewer: visualization and processing for large image data sets. Nature Methods. 12, 481-483 (2015).
  54. Posnien, N., et al. RNAi in the red flour beetle (Tribolium). Cold Spring Harbor Protocols. 2009, (2009).
  55. Keller, P. J., Stelzer, E. H. K. Digital scanned laser light sheet fluorescence microscopy. Cold Spring Harbor Protocols. 2010, (2010).
  56. Pitrone, P. G., et al. OpenSPIM: an open-access light-sheet microscopy platform. Nature Methods. 10, 598-599 (2013).
  57. Ferrando-May, E., et al. Advanced light microscopy core facilities: Balancing service, science and career. Microscopy Research and Technique. 79 (6), 463-479 (2016).
  58. Caroti, F., et al. Decoupling from Yolk sac is required for extraembryonic tissue spreading in the scuttle fly megaselia abdita. Elife. , 34616 (2018).
  59. Nakamura, T., et al. Imaging of transgenic cricket embryos reveals cell movements consistent with a syncytial patterning mechanism. Current Biology. 20, 1641-1647 (2010).
  60. Donoughe, S., Kim, C., Extavour, C. G. High-throughput live-imaging of embryos in microwell arrays using a modular specimen mounting system. Biology Open. , (2018).
  61. Uribe, V., et al. In vivo analysis of cardiomyocyte proliferation during trabeculation. Development. 145 (14), 164194 (2018).

Play Video

Cite This Article
Ratke, J., Krämer, F., Strobl, F. Simultaneous Live Imaging of Multiple Insect Embryos in Sample Chamber-Based Light Sheet Fluorescence Microscopes. J. Vis. Exp. (163), e61713, doi:10.3791/61713 (2020).

View Video