Summary

Use of Fimbrial Rod for F18ab Fimbriae+ STEC Colonization to Host Cells

Published: September 24, 2020
doi:

Summary

Here we present a protocol to study the function of fimbriae in bacterial colonization.

Abstract

Type 1 fimbriae are important virulence determinants of some Gram-negative pathogens, which promote bacterial colonization. The fimbrial rod is primarily composed of multiple copies of the major fimbrial subunit FimA. FimH adhesin, however, is present as a fibrillar tip structure that drive bacteria binding to host cellular mannose containing receptor. Here, we provide protocols to evaluate and compare the function of type 1 fimbrial subunits in F18ab fimbriae+ Shiga toxin-producing Escherichia coli (STEC). We found that both FimA and FimH are required for bacterial adhesion, invasion, and biofilm formation. Deleting fimA gene showed much more reduction in bacterial adhesion and invasion to porcine intestinal columnar epithelial cells IPEC-J2, than that of fimH mutant. Biofilm formation was significantly reduced in both mutants with an equal level. In addition, qPCR demonstrated that either fimA or fimH deletion down-regulated the bacterial flagella and F18 fimbriae genes expression, while up-regulated adhesin was involved in diffuse adherence-I (AIDA-I) gene expression, suggesting the co-regulation of cell surface-localized adhesins in F18ab fimbriae+ STEC.

Introduction

Bacterial fimbriae mediated adhesion facilitates bacterial attachment to a target cell surface and establishes an initial infection. Type 1 fimbriae are widely distributed among Escherichia coli (E. coli) and promote bacterial attachment to mammalian cells by binding to the mannose-containing receptor1,2,3. In contrast to pathogenic strains, 85% of tested commensal E. coli strains of human origin do not express type 1 fimbriae4, which indicates its critical roles in disease infection. Type 1 fimbriae are also important virulence factors for extra-intestinal pathogens, such as uropathogenic E. coli (UPEC) and neonatal meningitis-causing E. coli (NMEC)2,5,6.

Infections caused by F18 fimbriae+ (including two variants: ab and ac) Shiga toxin-producing E. coli (STEC) strains are associated with porcine edema disease (ED) and post-weaning diarrhea (PWD)7. Porcine F18 fimbriae+ STEC attaches to intestinal epithelial receptors by a variety of surface adhesins, including F18 fimbriae, flagella, E. coli common pilus (ECP) and the adhesin involved in diffuse adherence (AIDA-I)8,9,10,11. Previously, we had investigated the function of type 1 fimbriae in F18ac fimbriae+ ETEC, which demonstrated that type 1 fimbriae facilitate bacterial biofilm formation and adhesion to host cells12. However, as the pathogenesis of F18ab and F18ac fimbriae+ STEC are not totally the same7, the role of type 1 fimbriae in F18ab fimbriae+ STEC remains unclear. The fimbrial rod is primarily composed of multiple copies of the major fimbrial subunit FimA, and FimH adhesin is assembled into a fibrillar tip structure that drive bacteria binding to host cellular mannose containing receptor13. Using λ-Red recombination14, we had successfully knocked out fimA/fimH gene from a F18ab fimbriae+ STEC strain F107/86 (wild-type, O139:H1, Stx2e+), and constructed complement strains for this study15.

Here, we describe a protocol to study the function of bacterial fimbriae in colonization. Bacteria adhesion assay and invasion assay are major methods to investigate the bacteria fimbrial binding performance. It is complicated and costly to perform an animal challenge model or isolate the primary cell line for further infection assays16. Usually, neither of these results are stable with good repeatability since the individual differences are present between the tested animal. In this study, IPEC-J2 cells are used. These are porcine intestinal columnar epithelial cells that have been isolated from a neonatal piglet’s mid-jejunum17. It is a stable in vitro cell model for examining the interactions of various animal and human pathogens, including Salmonella enterica and pathogenic E. coli, with intestinal epithelial cells18, helping explain the role of fimbriae in intestinal infection conveniently and quickly. Otherwise, IPEC-1 cells are another widely used porcine intestinal epithelial cell line, in which case the composition of cellular receptors are different from IPEC-J219. For the study of mammary pathogenic bacteria, it is better to use mammary epithelial cell line MAC-T20. Hence, for different bacterial pathogenic conditions, choice of a suitable cell line which mimic in vivo environments is important.

In addition, the biofilm is another essential characteristic for bacterial survival during colonization21. In the previous works, silver and congo red were used to stain the biofilm formation in the glass tubes that visually showed the results22,23. However, the difference of biofilm formation ability between varying strains cannot be measured. Here, we also present a protocol for the quantification of bacterial biofilm formation in vitro, which could easily evaluate the ability of fimbriae in biofilm formation.

The methods proposed in this study utilize a fast and simple in vitro way to determine the function of bacterial fimbriae during the bacteria infection process, which can be widely adapted to other researches in the study of virulence factor in bacterial pathogenic mechanism.

Protocol

1. Cell culture Maintain IPEC-J2 cells in a 25 cm2 flask containing 5 mL of antibiotic-free F12-RPMI1640 (1:1) mixed media supplemented with 10% fetal bovine serum (FBS) at 37 °C, in a 5% CO2 incubator. One day before the adhesion assay, use 1 mL of 0.05% trypsin-EDTA solution to trypsinize IPEC-J2 cells for 3 min. Gently remove the trypsin-EDTA solution before cells start shedding from the flask. Add 3 mL of growth media and suspend the cells. Use 10 µL of …

Representative Results

FimA is more important than FimH in F18ab fimbriae+ STEC adhesion and invasion to IPEC-J2 cells. Compared to WT strain, deleting fimA reduced F18ab fimbriae+ STEC adhesion to IPEC-J2 cells by approximately 86% (p < 0.01), while deleting fimH reduced STEC adhesion by approximately 71% (p < 0.01) (Figure 1A). Blocking the adhesin FimH of WT strain by co-incubating with 4% D-mannose showed an equal adhesion ability with the &#916…

Discussion

The methods provided here help to efficiently determine the function of fimbriae in bacterial colonization. Interestingly, in this study, deletion of fimA showed 15% less adhesion than fimH mutant, suggesting that tip adhesin may not be the only factor required for F18ab fimbriae+ STEC adhesion and that fimbrial rod subunit, FimA, works in bacterial attachment as well (Figure 1A). A recent study proposed that FimA modulated mechanical properties of the fimbrial s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (No. 31672579).

Materials

96-well microplate Corning 3599 adhesion and invasion assay
96-well microplate(Round bottom) Corning 3799 biofilm formation
crystal violet Sinopharm Chemical Reagent 71012314 Biofilm staining
dextrose Sangon Biotech A610219 Culture broth
Ex Taq TaKaRa RR01A PCR
F12 medium Gibco 11765062 Cell culture
FeSO4 Sangon Biotech A501386 Culture broth
K2HPO4 Sinopharm Chemical Reagent 20032116 Culture broth
KH2PO4 Sinopharm Chemical Reagent 10017608 Culture broth
L-Arabinose Sangon Biotech A610071 λ-Red recombination
MgSO4 Sinopharm Chemical Reagent 20025117 Culture broth
NaCl Sinopharm Chemical Reagent 10019308 Culture broth
(NH4)2SO4 Sinopharm Chemical Reagent 10002917 Culture broth
Micro spectrophotometer Thermo Fisher Nano Drop one Nucleic acid concentration detection
New-born calf serum Gibco 16010159 Cell culture
Peptone Sangon Biotech A505247 Culture broth
PrimeScript RT reagent Kit with gDNA Eraser TaKaRa RR047 qPCR
Real-Time PCR Applied Biosystems 7500 system qPCR
RPMI1640 medium Gibco 11875500 Cell culture
Spectrophotometer Eppendorf BioSpectrometer Absorbance detection
Spectrophotometer (96-well microplate) BioTek Epoch Absorbance detection
SYBR Premix Ex Taq II TaKaRa RR820 qPCR
Tabletop centrifuge Thermo Fisher Micro 17(R) Centrifugation
thiamine hydrochloride Sangon Biotech A500986 Culture broth
Triton X-100 Sangon Biotech A110694 adhesion and invasion assay
TRIzol Invitrogen 15596018 RNA isolation
Tryptone Oxoid LP0042 Culture broth
Yeast extract Oxoid LP0021 Culture broth

References

  1. Ofek, I., Beachey, E. H. Mannose binding and epithelial cell adherence of Escherichia coli. Infection and Immunity. 22 (1), 247-254 (1978).
  2. Khan, N. A., Kim, Y., Shin, S., Kim, K. S. FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. Cellular Microbiology. 9 (1), 169-178 (2007).
  3. Ashkar, A. A., et al. FimH adhesin of type 1 fimbriae is a potent inducer of innate antimicrobial responses which requires TLR4 and type 1 interferon signalling. PLoS Pathogens. 4 (12), (2008).
  4. Pusz, P., Bok, E., Mazurek, J., Stosik, M., Baldy-Chudzik, K. Type 1 fimbriae in commensal Escherichia coli derived from healthy humans. Acta Biochimica Polonica. 61 (2), 389-392 (2014).
  5. Gunther, N. W., Lockatell, V., Johnson, D. E., Mobley, H. L. In Vivo Dynamics of Type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infection and Immunity. 69 (5), 2838-2846 (2001).
  6. Justice, S. S., et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proceedings of the National Academy of Sciences of the United States of America. 101 (5), 1333-1338 (2004).
  7. Imberechts, H., et al. Characterization of F18 fimbrial genes fedE and fedF involved in adhesion and length of enterotoxemic Escherichia coli strain 107/86. Microbial Pathogenesis. 21 (3), 183-192 (1996).
  8. Nagy, B., et al. Biological relationship between F18ab and F18ac fimbriae of enterotoxigenic and verotoxigenic Escherichia coli from weaned pigs with oedema disease or diarrhoea. Microbial Pathogenesis. 22 (1), 1-11 (1997).
  9. Ravi, M., et al. Contribution of AIDA-I to the pathogenicity of a porcine diarrheagenic Escherichia coli and to intestinal colonization through biofilm formation in pigs. Veterinary Microbiology. 120 (3-4), 308-319 (2007).
  10. Duan, Q., et al. The flagella of F18ab Escherichia coli is a virulence factor that contributes to infection in a IPEC-J2 cell model in vitro. Veterinary Microbiology. 160 (1-2), 132-140 (2012).
  11. Rendón, M. A., et al. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proceedings of the National Academy of Sciences of the United States of America. 104 (25), 10637-10642 (2007).
  12. Duan, Q., Nandre, R., Zhou, M., Zhu, G. Type I fimbriae mediate in vitro adherence of porcine F18ac+ enterotoxigenic Escherichia coli (ETEC). Annals of Microbiology. 44 (1), (2017).
  13. Zeiner, S. A., Dwyer, B. E., Clegg, S. FimA, FimF, and FimH are necessary for assembly of type 1 fimbriae on Salmonella enterica Serovar Typhimurium. Infection and Immunity. 80 (9), 3289-3296 (2012).
  14. Datsenko, K. A., Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America. 97 (12), 6640-6645 (2000).
  15. Guo, Z. Study on FimA mediated F18ab+ Escherichi coli pathogenicity. Yangzhou University. , (2014).
  16. Kudva, I. T., Dean-Nystrom, E. A. Bovine recto-anal junction squamous epithelial (RSE) cell adhesion assay for studying Escherichia coli O157 adherence. Journal of Applied Microbiology. 111, 1283-1294 (2011).
  17. Berschneider, H. Development of normal cultured small intestinal epithelial cell lines which transport Na and Cl. Gastroenterology. 96, 41 (1989).
  18. Brosnahan, A. J., Brown, D. R. Porcine IPEC-J2 intestinal epithelial cells in microbiological investigations. Veterinary Microbiology. 156, 229-237 (2012).
  19. Koh, S. Y., et al. Porcine intestinal epithelial cell lines as a new in vitro model for studying adherence and pathogenesis of enterotoxigenic Escherichia coli. Veterinary Microbiology. 130, 191-197 (2008).
  20. Dogan, B., et al. Phylogroup and lpfA influence epithelial invasion by mastitis associated Escherichia coli. Veterinary Microbiology. 159, 163-170 (2012).
  21. Hossain, M. M., Tsuyumu, S. Flagella-mediated motility is required for biofilm formation by Erwinia carotovora subsp. carotovora. Journal of General Plant Pathology. 72 (1), 34-39 (2006).
  22. Wang, Y., Chen, H., Zhu, X. Observation on Pseudomonas aeruginosa biofilm with sliver staining method. Chinese Journal of Microecology. 12 (1), (2012).
  23. Ambalam, P., Kondepudi, K. K., Nilsson, I., Wadström, T., Ljungh, &. #. 1. 9. 7. ;. Bile stimulates cell surface hydrophobicity, congo red binding and biofilm formation of lactobacillus strains. FEMS Microbiology Letters. 333 (1), 10-19 (2012).
  24. Schmittgen, T. D., Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols. 3 (6), (2008).
  25. Kisiela, D. I., et al. Evolutionary analysis points to divergent physiological roles of type 1 fimbriae in Salmonella and Escherichia coli. mBio. 4 (2), (2013).
  26. Forero, M., Yakovenko, O., Sokurenko, E. V., Thomas, W. E., Vogel, V. Uncoiling mechanics of Escherichia coli type I fimbriae are optimized for catch bonds. PLoS Biology. 4 (9), 298 (2006).
  27. Di Martino, P., Cafferini, N., Joly, B., Darfeuille-Michaud, A. Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Research in Microbiology. 154 (1), 9-16 (2003).
  28. Fazli, M., et al. The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349. MicrobiologyOpen. 2 (1), 105-122 (2013).
  29. Zamani, H., Salehzadeh, A. Biofilm formation in uropathogenic Escherichia coli: association with adhesion factor genes. Turkish Journal of Medical Sciences. 48 (1), 162-167 (2018).
  30. Duan, Q., et al. Contribution of flagellin subunit FliC to piglet epithelial cells invasion by F18ab E. coli. Veterinary Microbiology. 166 (1-2), 220-224 (2013).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Zhou, M., Duan, Q., Yang, Y., Zhu, G. Use of Fimbrial Rod for F18ab Fimbriae+ STEC Colonization to Host Cells. J. Vis. Exp. (163), e61761, doi:10.3791/61761 (2020).

View Video