Summary

使用克莱森-施密特凝结方法合成pH依赖皮拉佐尔、伊米达佐尔和伊森多龙二苯酮氟磷

Published: June 10, 2021
doi:

Summary

克莱森-施密特凝结反应是产生甲氨酸桥结合双环芳香化合物的重要方法。通过利用阿尔多尔反应的基础介导变种,可以通过一种通常便宜且操作简单的合成方法访问一系列荧光和/或生物相关分子。

Abstract

甲氨酸桥结合的双环芳香化合物是一系列生物相关分子的常见成分,如猪皮林、二苯酮和药物。此外,这些系统的有限旋转通常会导致高度到中度荧光系统,如在 3H,5H-迪皮罗洛 [1,2-c:2’, 1’f] pyrimidin-3- 1, 黄磷、皮罗林多利齐尼迪奥内类比、博迪皮类比以及绿色荧光蛋白 (GFP) 的酚类和伊米达佐林环系统。本手稿描述了一种廉价且操作简单的方法,即执行克莱森-施密特凝结,以产生一系列荧光pH依赖性皮拉佐尔/伊米达佐尔/异丙酮二苯酮类比。虽然该方法说明了二苯酮类比的合成,但它可以转化为产生广泛的结合双环芳香化合物。本方法所使用的克莱森-施密特凝结反应的范围仅限于在基本条件下(核嗜好成分)和不可抗性醛(电嗜酸成分)下可凝结的核嗜好者和电嗜好者。此外,核嗜血和电亲反应物必须包含不会无意中与氢氧化物反应的功能组。尽管有这些限制,这种方法提供了完全新颖的系统,可以用作生物或分子探针。

Introduction

一些共生双循环系统,其中两个芳香环由单体桥连接,通过键旋转进行异构,当兴奋与光子(图1A)1,2,3,4,5。兴奋的同位素一般会放松到地面状态通过非辐射衰变过程6。如果对键旋转的能量屏障增加得足够大,则有可能限制或防止光同步。相反,光子激发导致兴奋的单一状态,经常通过荧光放松,而不是非辐射衰变(图1B)。抑制光异构化最常通过机械地通过共价链系住两个芳香环系统来限制粘结旋转,从而将分子锁定在特定的同位素状态。这种方法已被用于创建几个不同的荧光三环二苯酮和二甲基甲烷类比,如:3H,5H-二倍丙酮[1,2-c:2’,1’f]皮里米丁-3-一(1),xan异种生物(267, 皮罗洛林多利齐尼迪安类比(38,和博迪皮类比9 (4,图 2),其中聚丙烯和 / 或苯乙烯环系统系上甲基, 碳基, 或波龙二氟链接器。通常,14 拥有ΦF > 0.7 表明这些系统作为氟合金单位非常有效。

也可以通过通过环系统共同连接以外的其他方法限制光异构化。例如,绿色荧光蛋白(GFP)的酚类和二胺酮环(图2)受蛋白质环境限制旋转:与自由溶液10中的同一色素单元相比,限制性设置使量子产量增加三个数量级。据认为,GFP的蛋白质支架通过固态和静电效应11提供了旋转屏障。最近,我们的小组与内华达大学的奥多小组合作,里诺发现了另一种氟化物系统,其结构与基于二苯酮的xanthoglow系统(2)12具有相似性。然而,这些二苯酮类比不同于血管内氢键中的xanthoglow系统,而不是共价键,阻止光分母化,并导致荧光双环系统。此外,皮拉佐尔、伊米达佐尔和同位素二苯酮类比可以在质子和脱质状态下结合氢气:脱质导致兴奋和发射波长的红色转移,可能是由于系统电子性质的变化。虽然氢结合被报道通过限制旋转13、14、15、16来增加量子产量,但我们不知道任何其他荧光系统,其中受限异位化在分子质子和脱质状态中都起到荧光作用。因此,这些pH依赖二苯酮氟酚在这方面是独一无二的。

在本视频中,我们专注于荧光二苯酮模拟系列的合成和化学特征。特别是,人们强调克莱森-施密特凝结方法,该方法用于构建一系列完整的荧光模拟。这种反应依赖于一种以基础为媒介的恶毒的离子的产生,这种离子攻击醛组,产生一种酒精,随后被消除。对于二苯酮模拟系列,皮罗林酮/异丙酮被转换为一个归因,以促进对附着在苯丙烯或二甲基苯甲酸酯环上的醛组的攻击(图3):消除后,形成了一个完全结合的双循环系统,由甲氨酸桥连接。值得注意的是,整个系列的二苯酮类比可以由现成的商业材料构建,可以以单一的单锅反应序列生产,通常为中等至高产量(产量范围约为 50-95%)。由于大多数二苯酮类比在性质上是高度晶体的,在标准工作条件之外,很少需要纯化来生产分析纯样品。因此,这种氟化物系统只需几步即可从现成的商业材料中获取,并且可以在相对较短的时间内合成、纯化和准备进行分析或生物研究。

Protocol

1. 二苯酮模拟合成通用程序 16-25 在圆底烧瓶中溶解5.0 mL乙醇中的苯丙酮/异丙酮(1.00 mmol)和相应的乙醇/二甲醛(1.00 mmol)。 将无瓶KOH(24.0 mmol,10M,2.40 mL)加入烧瓶中的一部分。 搅拌并倒流混合物,直到反应完成由 TLC 确认(有关反应时间列表,请参阅 表 1)。使用了二氯甲烷中10%甲醇的TLC,并观察到这些类比在0.62到0.86范围内或周围具有Rf 值。在?…

Representative Results

克莱森-施密特凝结反应提供了使用协议部分描述的单锅程序(见第1步)访问二苯酮类比(16-25,图4)。模拟16-25全部由凝结丙酮9,溴化物酮10,或异丙酮11与1H-伊米达佐尔-2-碳水化合物(12),产生1 H-伊米达佐尔-5-卡博卡尔醛(13), 1H- 皮拉佐尔-3-卡?…

Discussion

克莱森-施密特凝结方法提供了一个相当强大的手段,通过相对操作简单的协议产生苯丙酮、二甲苯酮和二苯酮氟。虽然荧光二苯酮类比的合成是本研究的重点,但应当指出,类似的条件可以应用于访问其他双环甲基苯丙酮环系统,如二苯酮23、24、25和苯丙酮-富兰辅音26以及 3H-pyrazol-3-一-furan 辅音<sup cla…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Z.R.W.和N.B感谢NIH(2P20GM103440-14A1)的慷慨资助,以及荣杰大学和内华达大学,拉斯维加斯,他们协助获得 1H和 13CNMR。此外,我们要感谢国家安全委员会视觉媒体学生,阿诺德·普莱森西亚-弗洛雷斯,奥布里·雅各布斯和阿利斯泰尔·库珀在本手稿的电影摄影部分的拍摄和动画过程中的帮助。

Materials

3-ethyl-4-methyl-3-pyrrolin-2-one Combi-Blocks  [766-36-9] Yellow solid reagent
isoindolin-1-one ArkPharm  [480-91-1] Off-white solid reagent
5-bromoisoindolin-1-one Combi-Blocks  [552330-86-6] Pink solid reagent
2-formylimidazole Combi-Blocks  [10111-08-7 ] Off-white solid reagent
Imidazole-4-carbaldehyde ArkPharm  [3034-50-2] Solid reagent
1-H-pyrazole-4-carbaldehyde Oakwood Chemicals  [35344-95-7] Solid reagent
1-H-pyrazole-5-carbaldehyde Matrix Scientific  [3920-50-1] Solid reagent
Solid KOH Pellets BeanTown Chemicals [1310-58-3] White solid pellets
Siliflash Silica Gel Scilicycle R12030B Fine white powder
Phosphate Buffered Saline (PBS) (x10) Growcells MRGF-6235 Colorless translucent liquid
Beckman Coulter DU-800 UV/Vis Spectrophotometer and Software Beckman Coulter N/A Spectroscopy Instrument and Software
Fluoromax-4 Spectrofluorometer Horiba Scientific N/A Spectroscopy Instrument
FluorEssence Fluoremetry Software V3.5 Horiba Scientific N/A Spectroscopy Software
Finnpipette II Micropipette (sizes: 100-1,000, 20-200, and 0.5-10 µL) Fischerbrand N/A Equipment
Wilmad-LabGlass Rotary Evaporator (Model: WG-EV311-V-PLUS) SP Scienceware N/A Equipment
DuoSeal Vacuum Pump (Model Number: 1405) Welch N/A Equipment
GraphPad Prism 4 GraphPad N/A Data Analysis Software
SympHony pH Meter (Model: Sb70P) VWR N/A Equipment

References

  1. Abbandonato, G., et al. Cis-trans photoisomerization properties of GFP chromophore analogs. European Biophysics Journal. 40 (11), 1205-1214 (2011).
  2. Funakoshi, H., et al. Spectroscopic studies on merocyanine photoisomers. IV. Catalytic isomerization of photoisomers of merocyanine derivatives in protic solvents. Nippon Kagaku Kaishi. (9), 1516-1522 (1989).
  3. Puzicha, G., Shrout, D. P., Lightner, D. A. Synthesis and properties of homomologated and contracted dipyrrinone analogs of xanthobilirubic acid. Journal of Heterocyclic Chemistry. 27 (7), 2117-2123 (1990).
  4. Bonnett, R., Hamzetash, D., Asuncion Valles, M. Propentdyopents [5-(2-oxo-2H-pyrrol-5-ylmethylene)pyrrol-2(5H)-ones] and related compounds. Part 2. The Z E photoisomerization of pyrromethenone systems. Journal of the Chemical Society, Perkins Transactions. 1 (6), 1383-1388 (1987).
  5. Tikhomirova, K., Anisimov, A., Khoroshutin, A. Biscyclohexane-Annulated Diethyl Dipyrrindicarboxylates: Observation of a Dipyrrin Form with Absent Visible Absorption. European Journal of Organic Chemistry. 2012 (11), 2201-2207 (2012).
  6. Brower, J. O., Lightner, D. A. Synthesis and spectroscopic properties of a new class of strongly fluorescent dipyrrinones. Journal of Organic Chemistry. 67 (8), 2713-2716 (2002).
  7. Woydziak, Z. R., Boiadjiev, S. E., Norona, W. S., McDonagh, A. F., Lightner, D. A. Synthesis and Hepatic Transport of Strongly Fluorescent Cholephilic Dipyrrinones. Journal of Organic Chemistry. 70 (21), 8417-8423 (2005).
  8. Jarvis, T., et al. Pyrrole β-amides: Synthesis and characterization of a dipyrrinone carboxylic acid and an N-Confused fluorescent dipyrrinone. Tetrahedron. 74 (14), 1698-1704 (2018).
  9. Bodio, E., Denat, F., Goze, C. BODIPYS and aza-BODIPY derivatives as promising fluorophores for in vivo molecular imaging and theranostic applications. Journal of Porphyrins and Phthalocyanines. 23, 1159-1183 (2019).
  10. Acharya, A., et al. Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing. Chemical Reviews. 117 (2), 758-795 (2017).
  11. Romei, M. G., Lin, C. -. Y., Mathews, I. I., Boxer, S. G. Electrostatic control of photoisomerization pathways in proteins. Science. 367 (6473), 76-79 (2020).
  12. Benson, N., Suleiman, O., Odoh, S. O., Woydziak, Z. Ryrazole, Imidazole, and Isoindolone Dipyrrinone Analogues: pH-Dependent Fluorophores That Red-Shift Emission Frequencies in a Basic Solution. Journal of Organic Chemistry. 84 (18), 11856-11862 (2019).
  13. Xie, P., Gao, G., Liu, J., Jin, Q., Yang, G. A New Turn on Fluorescent Probe for Selective Detection of Cysteine/Homocysteine. Journal of Fluorescence. 25 (5), 1315-1321 (2015).
  14. Alty, I. G., et al. Intramolecular Hydrogen-Bonding Effects on the Fluorescence of PRODAN Derivatives. Journal of Physical Chemistry A. 120 (20), 3518-3523 (2016).
  15. Yang, Y., Li, D., Li, C., Liu, Y. F., Jiang, K. Hydrogen bond strengthening induces fluorescence quenching of PRODAN derivative by turning on twisted intramolecular charge transfer. Spectrochimica Acta, Part A. 187, 68-74 (2017).
  16. Zhang, L., Liu, J., Gao, J., Zhang, F., Ding, L. High solid fluorescence of a pyrazoline derivative through hydrogen bonding. Molecules. 22 (8), 1 (2017).
  17. Williams, A. T. R., Winfield, S. A., Miller, J. N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst. 108 (1290), 1067-1071 (1983).
  18. Eaton, D. F. Reference materials for fluorescence measurement. Pure and Applied Chemistry. 60 (7), 1107-1114 (1988).
  19. Dawson, W. R., Windsor, M. W. Fluorescence yields of aromatic compounds. Journal of Physical Chemistry. 72 (9), 3251-3260 (1968).
  20. Zhang, X. -. F., Zhang, J., Lu, X. The Fluorescence Properties of Three Rhodamine Dye Analogues: Acridine Red, Pyronin Y and Pyronin B. Journal of Fluorescence. 25 (4), 1151-1158 (2015).
  21. Zanker, V., Rammensee, H., Haibach, T. Measurements of the relative quantum yields of the fluorescence of acridine and fluorescein dyes. Zeitschrift für Angewandte Physik. 10, 357-361 (1958).
  22. Mujumdar, R. B., Ernst, L. A., Mujumdar, S. R., Lewis, C. J., Waggoner, A. S. Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters. Bioconjugate Chemistry. 4 (2), 105-111 (1993).
  23. Battersby, A. R., Dutton, C. J., Fookes, C. J. R. Synthetic studies relevant to biosynthetic research on vitamin B12. Part 7. Synthesis of (±)-bonellin dimethyl ester. Journal of the Chemical Society, Perkin Transactions. 1 (6), 1569-1576 (1988).
  24. Pfeiffer, W. P., Lightner, D. A. (m.n)-Homorubins: syntheses and structures. Monatschfte für Chemie. 145 (11), 1777-1801 (2014).
  25. Huggins, M. T., Musto, C., Munro, L., Catalano, V. J. Molecular recognition studies with a simple dipyrrinone. Tetrahedron. 63 (52), 12994-12999 (2007).
  26. Groselj, U., et al. Synthesis of Spiro-δ2-Pyrrolin-4-One Pseudo Enantiomers via an Organocatalyzed Sulfa-Michael/Aldol Domino Sequence. Advanced Synthesis & Catalyst. 361 (22), 5118-5126 (2019).
  27. El-Shwiniy, W. H., Shehab, W. S., Mohamed, S. F., Ibrahium, H. G. Synthesis and cytotoxic evaluation of some substituted pyrazole zirconium(IV) complexes and their biological assay. Applied Organometallic Chemistry. 32 (10), (2018).
  28. Murray, L., O’Farrell, A. -. M., Abrams, T. Preparation of indolinone compounds for treatment of excessive osteolysis. US Patent. , (2004).
  29. Lozinskaya, N. A., et al. Synthesis and biological evaluation of 3-substituted 2-oxindole derivatives as new glycogen synthase kinase 3β inhibitors. Bioorganic & Medicinal Chemistry. 27 (9), 1804-1817 (2019).
  30. Montforts, F. P., Schwartz, U. M. A directed synthesis of the chlorin system. Liebigs Annalen der Chemie. (6), 1228-1253 (1985).
  31. Uddin, M. I., Thirumalairajan, S., Crawford, S. M., Cameron, T. S., Thompson, A. Improved synthetic route to C-ring ester-functionalized prodigiosenes. Synlett. (17), 2561-2564 (2010).
  32. Brower, J. O., Lightner, D. A., McDonagh, A. F. Aromatic congeners of bilirubin: synthesis, stereochemistry, glucuronidation and hepatic transport. Tetrahedron. 57 (37), 7813-7827 (2001).
  33. Clift, M. D., Thomson, R. J. Development of a Merged Conjugate Addition/Oxidative Coupling Sequence. Application to the Enantioselective Total Synthesis of Metacycloprodigiosin and Prodigiosin R1. Journal of the American Chemical Society. 131 (40), 14579-14583 (2009).
  34. Brower, J. O., Lightner, D. A., McDonagh, A. F. Synthesis of a New Lipophilic Bilirubin. Conformation, Transhepatic Transport and Glucuronidation. Tetrahedron. 56 (40), 7869-7883 (2000).
check_url/61944?article_type=t

Play Video

Cite This Article
Benson, N., Davis, A., Woydziak, Z. R. Synthesis of pH Dependent Pyrazole, Imidazole, and Isoindolone Dipyrrinone Fluorophores using a Claisen-Schmidt Condensation Approach. J. Vis. Exp. (172), e61944, doi:10.3791/61944 (2021).

View Video