Summary

In situ Erforschung der murinen Megakaryopoese mittels Transmissionselektronenmikroskopie

Published: September 08, 2021
doi:

Summary

Hier stellen wir ein Protokoll zur Analyse der Ultrastruktur der Megakaryozyten in situ mittels Transmissionselektronenmikroskopie (TEM) vor. Murine Knochenmarke werden gesammelt, fixiert, in Epoxidharz eingebettet und in ultradünnen Abschnitten geschnitten. Nach der Kontrastfärbung wird das Knochenmark unter einem TEM-Mikroskop bei 120 kV beobachtet.

Abstract

Differenzierung und Reifung von Megakaryozyten erfolgen in enger Verbindung mit den zellulären und extrazellulären Komponenten des Knochenmarks. Diese Prozesse sind durch das allmähliche Auftreten essentieller Strukturen im Megakaryozytenzytoplasma wie einem polyploiden und polylobulierten Kern, einem internen Membrannetzwerk namens Demarkationsmembransystem (DMS) und den dichten und Alpha-Granula, die in zirkulierenden Blutplättchen gefunden werden, gekennzeichnet. In diesem Artikel beschreiben wir ein standardisiertes Protokoll für die in situ ultrastrukturelle Untersuchung von murinen Megakaryozyten mittels Transmissionselektronenmikroskopie (TEM), das die Identifizierung von Schlüsselmerkmalen ermöglicht, die ihr Reifestadium und ihre Zelldichte im Knochenmark definieren. Knochenmark wird gespült, fixiert, in Ethanol dehydriert, in Kunststoffharz eingebettet und zur Erzeugung von Querschnitten montiert. Halbdünne und dünne Schnitte werden für histologische bzw. TEM-Beobachtungen hergestellt. Diese Methode kann für jede Knochenmarkzelle in jeder EM-Einrichtung verwendet werden und hat den Vorteil, dass kleine Stichprobengrößen verwendet werden, die die Kombination mehrerer Bildgebungsansätze auf derselben Maus ermöglichen.

Introduction

Megakaryozyten sind spezialisierte große polyploide Zellen, die im Knochenmark lokalisiert sind und für die Thrombozytenproduktion verantwortlich sind1. Sie stammen aus hämatopoetischen Stammzellen durch einen komplizierten Reifungsprozess, bei dem Megakaryozytenvorläufer zunehmend an Größe zunehmen, während sie gleichzeitig umfangreiche morphologische Veränderungen im Zytoplasma und im Zellkern erfahren2. Während der Reifung entwickeln Megakaryozyten eine Reihe von unterscheidbaren Strukturelementen, darunter: ein polylobulierter Kern, Einfärbungen der Oberflächenmembran, die das Demarkationsmembransystem (DMS) bilden, eine periphere Zone ohne Organellen, die vom Aktin-basierten Zytoskelettnetzwerk umgeben ist, und zahlreiche Organellen, darunter α-Granula, dichte Granula, Lysosomen und mehrere Golgi-Komplexe. Auf der ultrastrukturellen Ebene ist eine wesentliche Beobachtete Modifikation die zytoplasmatische Kompartimentierung in diskrete Regionen, die durch das DMS3begrenzt werden. Diese umfangreiche Versorgung mit Membranen wird die Verlängerung langer zytoplasmatischer Prozesse in der Anfangsphase der Thrombozytenproduktion vorantreiben, die sich dann im Kreislauf in Blutplättchen umwandeln. Jeder Defekt während der Megakaryozytendifferenzierung und -reifung kann die Thrombozytenproduktion in Bezug auf die Thrombozytenzahl und / oder die Thrombozytenfunktion beeinflussen.

Die Dünnschichttransmissionselektronenmikroskopie (TEM) ist seit Jahrzehnten der bildgebende Ansatz der Wahl und bietet eine qualitativ hochwertige Ultrastruktur von Megakaryozyten, die unser Verständnis der Physiologie der Thrombopoese geprägt haben4,5. Diese Arbeit konzentriert sich auf eine standardisierte TEM-Methode, die es ermöglicht, den Prozess der Thrombozytenbiogenese in situ innerhalb der nativen Knochenmark-Mikroumgebung zu erfassen, die auch als Grundlage für die Analyse eines beliebigen Knochenmarkzelltyps dienen könnte. Wir liefern ultrastrukturelle Beispiele für die Entwicklung von Megakaryozyten von unreif bis voll ausgereift, die zytoplasmatische Prozesse in die Mikrozirkulation von Sinusoiden ausdehnen6. Wir beschreiben auch ein einfaches Verfahren zur Quantifizierung der verschiedenen Megakaryozyten-Reifungsstadien, das die Regenerations- und Thrombozytenproduktionskapazität des Knochenmarks anleitet.

Protocol

Alle Tierversuche wurden in Übereinstimmung mit den europäischen Normen 2010/63/EU und dem CREMEAS-Ausschuss für die Ethik von Tierversuchen der Universität Straßburg (Comité Régional d’Ethique en Matière d’Expérimentation Animale Strasbourg) durchgeführt. Das Protokoll ist in Abbildung 1schematisch dargestellt. 1. Knochenmarkentnahme und -fixierung ( Abbildung 1A) VORSICHT: Dieses Verfahren umfasst…

Representative Results

Histologie des KnochenmarksDie Beobachtung der Knochenmark-Toluidin-Blau-Histologie unter einem Lichtmikroskop ist der Schlüssel zur schnellen Analyse der gesamten Gewebearchitektur in Bezug auf z.B. Gewebekompaktheit, Mikrogefäßkontinuität und die Größe und Form von Megakaryozyten (Abbildung 1D). Es wird vor ultradünnen Abschnitten durchgeführt, um die Notwendigkeit zu bestimmen, tiefer in den Knochenmarkblock zu schneiden. Aufgrund ihrer riesig…

Discussion

Die direkte Untersuchung von Megakaryozyten in ihrer natürlichen Umgebung ist unerlässlich, um Megakaryopoese und Thrombozytenbildung zu verstehen. In diesem Manuskript stellen wir eine Transmissionselektronenmikroskopie-Methode zur Verfügung, die Knochenmarkspülung und Fixierung durch Eintauchen kombiniert und es ermöglicht, die morphologischen Eigenschaften des gesamten Prozesses der Megakaryozytenmorphogenese im Knochenmark in situ zu sezieren.

Die Spülung des Knochenmarks is…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Die Autoren danken Fabienne Proamer, Jean-Yves Rinckel, David Hoffmann, Monique Freund für die technische Unterstützung. Diese Arbeit wurde von ARMESA (Association de Recherche et Développement en Médecine et Santé Publique), der Europäischen Union über den Europäischen Fonds für regionale Entwicklung (EFRE) und durch den Zuschuss ANR-17-CE14-0001-01 an H.d.S. unterstützt.

Materials

2,4,6-Tri(dimethylaminomethyl)phenol (DMP-30) Ladd Research Industries, USA 21310
Agarose type LM-3 Low Melting Point Agar Electron Microscopy Sciences, USA 1670-B
CaCl2 Calcium chloride hexahydrate Merck, Germany 2083
Copper grids 200 mesh thin-bar Oxford Instrument, Agar Scientifics, England T200-CU
Dimethylarsinic acid sodium salt trihydrate Merck, Germany 8.20670.0250
Dodecenyl Succinic Anhydride (DDSA) Ladd Research Industries, USA 21340
Double Edge Stainless Razor blade Electron Microscopy Sciences-EMS, USA EM-72000
Ethanol absolut VWR International, France 20821296
Filter paper, 90 mm diameter Whatman, England 512-0326
Flat embedding silicone mould Oxford Instrument, Agar Scientific, England G3533
Glutaraldehyde 25% Electron Microscopy Sciences-EMS, USA 16210
Heat plate Leica EMMP Leica Microsystems GmbH, Austria 705402
Histo Diamond Knife 45° Diatome, Switzerland 1044797
JEOL 2100 Plus TEM microscope JEOL, Japan EM-21001BU
Lead citrate – Ultrostain 2 Leica Microsystems GmbH, Austria 70 55 30 22
LX-112 resin Ladd Research Industries, USA 21310
MgCl2 Magnesium chloride hexahydrate Sigma, France M2393-100g
Mounting medium – Poly(butyl methacrylate-co-methyl methacrylate) Electron Microscopy Sciences-EMS, USA 15320
Nadic Methyl Anhydride (NMA) Ladd Research Industries, USA 21350
Osmium tetroxide 2% Merck, Germany 19172
Propylene oxide (1.2-epoxypropane) Sigma, France 82320-250ML
Saline injectable solution 0.9% NaCl C.D.M Lavoisier, France MA 575 420 6
Scalpel Surgical steel blade Swann-Morton, England .0508
Sodium tetraborate – Borax Sigma, France B-9876
Sucrose Merck, Germany 84100-1KG
Syringe filter 0.2µm Pall Corporation, USA 514-4126
Toluidine blue Ladd Research Industries, USA N10-70975
Trimmer EM TRIM2 Leica Microsystems GmbH, Austria 702801
Ultramicrotome Ultracut UCT Leica Microsystems GmbH, Austria 656201
Uranyl acetate Ladd Research Industries, USA 23620

References

  1. Machlus, K. R., Italiano, J. E. The incredible journey: From megakaryocyte development to platelet formation. The Journal of Cell Biology. 201 (6), 785-796 (2013).
  2. Zucker-Franklin, D., Termin, C. S., Cooper, M. C. Structural changes in the megakaryocytes of patients infected with the human immune deficiency virus (HIV-1). American Journal of Pathology. 134 (6), 9 (1989).
  3. Eckly, A., et al. Biogenesis of the demarcation membrane system (DMS) in megakaryocytes. Blood. 123 (6), 921-930 (2014).
  4. Scandola, C., et al. Use of electron microscopy to study megakaryocytes. Platelets. , 1-10 (2020).
  5. Behnke, O., Forer, A. From megakaryocytes to platelets: platelet morphogenesis takes place in the bloodstream. European Journal of Haematology. 60, 3-23 (2009).
  6. Eckly, A., et al. Characterization of megakaryocyte development in the native bone marrow environment. Platelets and Megakaryocytes. 788, 175-192 (2012).
  7. Brown, E., Carlin, L. M., Nerlov, C., Lo Celso, C., Poole, A. W. Multiple membrane extrusion sites drive megakaryocyte migration into bone marrow blood vessels. Life Science Alliance. 1 (2), 201800061 (2018).
  8. Eckly, A., et al. Megakaryocytes use in vivo podosome-like structures working collectively to penetrate the endothelial barrier of bone marrow sinusoids. Journal of Thrombosis and Haemostasis. , 15024 (2020).
  9. Cramer, E. M., et al. Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand. Blood. 89 (7), 2336-2346 (1997).
  10. Heijnen, H. F. G., Debili, N., Vainchencker, W., Breton-Gorius, J., Geuze, H. J. Multivesicular Bodies Are an Intermediate Stage in the Formation of Platelet α-Granules. Blood. 7 (7), 2313-2325 (1998).
  11. Gupta, N., Jadhav, K., Shah, V. Emperipolesis, entosis and cell cannibalism: Demystifying the cloud. Journal of Oral and Maxillofacial Pathology. 21 (1), 92 (2017).
  12. Centurione, L., et al. Increased and pathologic emperipolesis of neutrophils within megakaryocytes associated with marrow fibrosis in GATA-1low mice. Blood. 104 (12), 3573-3580 (2004).
  13. Ellis, S. L., et al. The relationship between bone, hemopoietic stem cells, and vasculature. Blood. 118 (6), 1516-1524 (2011).
  14. Bornert, A., et al. Cytoskeletal-based mechanisms differently regulate in vivo and in vitro proplatelet formation. Haematologica. , (2020).
check_url/62494?article_type=t

Play Video

Cite This Article
Scandola, C., Lanza, F., Gachet, C., Eckly, A. In Situ Exploration of Murine Megakaryopoiesis using Transmission Electron Microscopy. J. Vis. Exp. (175), e62494, doi:10.3791/62494 (2021).

View Video