Summary

跟踪开放全球伤害和治疗性能的前段器官文化平台

Published: August 25, 2021
doi:

Summary

在农村或与军事相关的情景中,开放全球眼损伤可能连续多日得不到治疗,导致失明。需要治疗,以尽量减少视力损失。在这里,我们详细介绍了器官文化开放地球伤害模型。通过这个模型,可以正确评估稳定这些伤害的潜在治疗方法。

Abstract

开放地球损伤的视觉效果不佳,往往导致永久性视力丧失。部分原因是在农村环境的伤害和医疗干预与无法随时获得眼科护理的军事医学应用之间拖延了一段时间。未经治疗的损伤在眼睛失去防水密封后容易受到感染,以及因血管内低血压而丧失组织生存能力。治疗暂时密封开放球损伤,如果适当开发,也许能够恢复眼内压力和防止感染,直到适当的眼科护理是可能的。为了促进产品开发,这里详细介绍了使用前段器官培养开放地球损伤平台,用于跟踪至少 72 小时受伤后的治疗性能。猪前段组织可在定制设计的器官培养皿中保持,并按生理内压举行。穿刺伤害可以使用气动供电系统创建,该系统能够产生直径高达 4.5 mm 的伤害大小,类似于与军事相关的伤害大小。受伤后72小时可观察到眼内压力损失,确认适当的损伤感应和眼睛防水密封的损失。治疗效果可以通过在损伤感应后应用于眼睛,然后跟踪眼内压力多日来跟踪。此外,前段损伤模型适用于广泛使用的功能和生物学跟踪前段生理学的方法,如评估透明度、眼部力学、角膜上皮健康和组织生存能力。总的来说,这里描述的方法是开发生物材料疗法的必要下一步,用于在眼科护理不易获得时暂时密封开放性地球损伤。

Introduction

开放球 (OG) 受伤可能导致永久性视力丧失时,不治疗或至少稳定后受伤1。然而,在偏远地区,如农村地区或军事场景中的战场上,眼科干预的渠道不易获得,因此出现延误的情况十分普遍。当治疗不是现成的时,目前的护理标准是用硬盾保护眼睛,直到医疗干预是可能的。在军事医学方面,这种延迟目前高达24小时,但预计在未来的作战行动中,在无法进行空中疏散的城市环境中,这一延迟将增加到72小时。这些延迟可以更长的时间在农村,偏远的民用应用,在那里获得眼科干预是有限的5,6。未经治疗的OG损伤极易感染和失去眼内压力(IOP),由于眼睛的防水密封被损害7,8。IOP的丧失会影响组织的生存能力,如果损伤和治疗之间的延迟时间过长,任何医疗干预都不太可能恢复视力。

为了在眼科专家到达之前开发易于应用的密封OG损伤治疗方法,以前开发了10,11台式OG损伤模型。有了这个模型,高速伤害在全猪的眼睛,而IOP被压力传感器捕获。然后,可以应用治疗方法来评估他们密封OG损伤现场12的能力。然而,由于该模型使用整个猪眼,它只能评估即时治疗性能,无法跟踪长期性能跨越可能的72小时窗口,其中治疗必须稳定损伤部位,直到患者达到特殊护理。因此,一个前段器官培养(ASOC)OG损伤模型被开发并详细在本协议作为一个平台,跟踪长期治疗性能13。

ASOC是一种广泛使用的技术,用于维持前段的血管组织,如角膜,在核化后多星期14,15,16,17。前段在生理IOP下维持,通过按生理流动速率给液体灌注,并在ASOC设置18、19期间保留负责调节IOP的组织——气管网状外流区域。ASOC平台可以保持组织生理,诱导OG损伤使用气动驱动的设备,应用治疗,并跟踪损伤稳定至少72小时后受伤13。

在此,该协议提供了使用 ASOC 平台的分步方法。首先,它详细说明了如何建立和构建ASOC平台。接下来,协议详细说明了如何无能地解剖前段并维护导管网格,然后在定制的器官培养皿中设置前段组织。然后,它详细说明了如何创建开放式地球伤害,并在受伤后立即应用治疗。最后,协议提供了一个概述的特征参数,可用于此方法,评估眼睛的功能,机械和生物特性,以及伤害稳定程度。总体而言,该模型为加快产品开发、稳定和治疗开放式地球损伤以及改善损伤后视力不良预后提供了急需的平台。

Protocol

在执行此协议之前,请注意,在研究和培训中使用动物有法律和道德要求。如果活体动物被用作眼组织来源,请在开始前获得当地道德或法律权威机构(IACUC 或道德委员会等)的批准。如果在获得动物使用批准方面有任何问题,请不要继续。我们之前确定并报告说,新鲜的猪眼获得和使用在24小时验尸相比,最接近体内生理学和表现良好,这些研究(动物技术,泰勒,德克萨斯州,美国<sup …

Representative Results

通过光学相干断层扫描 (OCT) 拍摄的图像显示为 OG 受伤的眼睛,以说明成功的损伤感应外观。图3显示图像控制和OG受伤的AS组织受伤后立即受伤和72小时后。显示两种视图:通过伤害部位的横截面图像和自上而下的最大强度投影 (MIP),以可视化图像的表面积。控制眼睛显示角膜没有明显的损伤,而明显的损伤可以位于OG受伤后穿过整个角膜。从 MIP 中,很明显,损伤在形?…

Discussion

ASOC OG 伤害平台有关键步骤,应予以强调,以提高使用该方法时成功的可能性。首先,在前段解剖过程中,保持导管网格是必不可少的,但要正确处理是具有挑战性的。如果 TM 中断,眼睛将无法维持生理压力,也不符合实验使用的资格标准。建议首先在正常条件下进行解剖过程,而不是引入额外的无菌技术挑战,直到获得适当的解剖。其次,在设置 ASOC 菜肴时,必须足够紧,以防止液体泄漏,但?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这些材料基于美国国防部通过与临时角膜修复采购计划(美国陆军医疗物资开发局)签订的机构间协议(#19-1006-IM)支持的工作。

Materials

10-32 Polycarbonate straight plug, male threaded pipe connector McMaster-Carr 51525K431
10-32 Socket cap screw, ½" McMaster-Carr 92196A269
10 mL syringe BD 302995
20 mL syringe BD 302830
Anti-Anti Gibco 15240-096
Ball-End L key McMaster-Carr 5020A25
Betadine Fisher Scientific NC1696484
BD Intramedic PE 160 Tubing Fisher Scientific 14-170-12E
Cotton swabs Puritan 25-8061WC
DMEM media ATCC 30-2002
FBS ATCC 30-2020
Fine forceps World Precision Instruments 15914
Gauze Covidien 8044
Gentamicin Gibco 15710-064
Glutamax Gibco 35050-061
High temperature silicone O-ring, 2 mm wide, 4 mm ID McMaster-Carr 5233T47
Large forceps World Precision Instruments 500365
Large surgical scissors World Precision Instruments 503261
Medium toothed forceps World Precision Instruments 501217
Nail (puncture object) McMaster-Carr 97808A503
Nylon syringe filters Fisher 09-719C
PBS Gibco 10010-023
Petri dish (100 mm) Fisher FB0875713
Polycarbonate, three-way, stopcock with male luer lock Fisher NC9593742
Razor blade Fisher 12-640
Stainless steel 18 G 90 degree angle dispensing needle McMaster-Carr 75165A81
Stainless steel 18 G straight ½'’ dispensing needle McMaster-Carr 75165A675
Sterile 100 mL beakers with lids VWR 15704-092
Vannas scissors World Precision Instruments WP5070

References

  1. Hilber, D., Mitchener, T. A., Stout, J., Hatch, B., Canham-Chervak, M. Eye injury surveillance in the US Department of Defense, 1996-2005. American Journal of Preventive Medicine. 38, 78-85 (2010).
  2. Linde, A. S., McGinnis, L. J., Thompson, D. M. Multi-Battle domain-perspective in military medical simulation trauma training. Journal of Trauma & Treatment. 06 (04), (2017).
  3. Riesberg, J., Powell, D., Loos, P. The loss of the golden hour. Special Warfare. , 49-51 (2017).
  4. Townsend, S., Lasher, W. . The US Army in Multi-Domain Operations 2028. (525-3-1), (2018).
  5. Blanch, R. J., Bishop, J., Javidi, H., Murray, P. I. Effect of time to primary repair on final visual outcome after open globe injury. The British Journal of Ophthalmology. 103 (10), 1491-1494 (2019).
  6. Lesniak, S. P., et al. Characteristics and outcomes of delayed open globe repair. Investigative Ophthalmology & Visual Science. 53 (14), 4954 (2012).
  7. Loporchio, D., Mukkamala, L., Gorukanti, K., Zarbin, M., Langer, P., Bhagat, N. Intraocular foreign bodies: A review. Survey of Ophthalmology. 61 (5), 582-596 (2016).
  8. Jonas, J. B., Budde, W. M. Early versus late removal of retained intraocular foreign bodies. Retina. 19 (3), 193-197 (1999).
  9. Watson, P. G., Jovanovik-Pandova, L. Prolonged ocular hypotension: would ciliary tissue transplantation help. Eye. 23 (10), 1916-1925 (2009).
  10. Snider, E. J., et al. Development and characterization of a benchtop corneal puncture injury model. Scientific Reports. 10 (1), 4218 (2020).
  11. Snider, E. J., et al. An open-globe porcine injury platform for assessing therapeutics and characterizing biological effects. Current Protocols in Toxicology. 86 (1), 98 (2020).
  12. Snider, E. J., Cornell, L. E., Gross, B., Zamora, D. O., Boice, E. N. Assessment of commercial off-the-shelf tissue adhesives for sealing military relevant corneal perforation injuries. Military Medicine. , (2021).
  13. Snider, E. J., Boice, E. N., Butler, J. J., Gross, B., Zamora, D. O. Characterization of an anterior segment organ culture model for open globe injuries. Scientific Reports. 11 (1), 8546 (2021).
  14. Erickson-Lamy, K., Rohen, J. W., Grant, W. M. Outflow facility studies in the perfused human ocular anterior segment. Experimental Eye Research. 52 (6), 723-731 (1991).
  15. Johnson, D. H., Tschumper, R. C. The effect of organ culture on human trabecular meshwork. Experimental Eye Research. 49 (1), 113-127 (1989).
  16. Johnson, D. H., Tschumper, R. C. Human trabecular meshwork organ culture. A new method. Investigative Ophthalmology & Visual Science. 28 (6), 945-953 (1987).
  17. Snider, E. J., et al. Improving stem cell delivery to the trabecular meshwork using magnetic nanoparticles. Scientific Reports. 8 (1), 12251 (2018).
  18. Llobet, A., Gasull, X., Gual, A. Understanding trabecular meshwork physiology: a key to the control of intraocular pressure. Physiology. 18 (5), 205-209 (2003).
  19. Goel, M., Picciani, R. G., Lee, R. K., Bhattacharya, S. K. Aqueous humor dynamics: A review. The Open Ophthalmology Journal. 4, 52-59 (2010).
  20. Snider, E. J., et al. Development of a porcine organ-culture glaucoma model mimicking trabecular meshwork damage. Investigative Ophthalmology & Visual Science. 62 (3), 18 (2021).
  21. Ren, H., Wilson, G. Apoptosis in the corneal epithelium. Investigative Ophthalmology & Visual Science. 37 (6), 1017-1025 (1996).
  22. Komuro, A., Hodge, D. O., Gores, G. J., Bourne, W. M. Cell death during corneal storage at 4°C. Investigative Ophthalmology & Visual Science. 40 (12), 2827-2832 (1999).
  23. Crespo-Moral, M., García-Posadas, L., López-García, A., Diebold, Y. Histological and immunohistochemical characterization of the porcine ocular surface. PLOS One. 15 (1), e0227732 (2020).
  24. Wilson, S. E., Medeiros, C. S., Santhiago, M. R. Pathophysiology of corneal scarring in persistent epithelial defects after prk and other corneal injuries. Journal of Refractive Surgery. 34 (1), 59-64 (2018).
  25. Auw-Haedrich, C., et al. Immunohistochemical expression of epithelial cell markers in corneas with congenital aniridia and ocular cicatrizing pemphigoid. Acta Ophthalmologica. 89 (1), 47-53 (2011).
  26. Lyngholm, M., et al. Immunohistochemical markers for corneal stem cells in the early developing human eye. Experimental Eye Research. 87 (2), 115-121 (2008).
  27. Bandamwar, K. L., Papas, E. B., Garrett, Q. Fluorescein staining and physiological state of corneal epithelial cells. Contact Lens & Anterior Eye: The Journal of the British Contact Lens Association. 37 (3), 213-223 (2014).
  28. Bandamwar, K. L., Garrett, Q., Papas, E. B. Sodium fluorescein staining of the corneal epithelium: What does it mean at a cellular level. Investigative Ophthalmology & Visual Science. 52 (14), 6496 (2011).
  29. Sherwood, J. M., Reina-Torres, E., Bertrand, J. A., Rowe, B., Overby, D. R. Measurement of outflow facility using iPerfusion. PLoS One. 11 (3), (2016).
  30. Weichel, E. D., Colyer, M. H., Ludlow, S. E., Bower, K. S., Eiseman, A. S. Combat ocular trauma visual outcomes during operations iraqi and enduring freedom. Ophthalmology. 115 (12), 2235-2245 (2008).
  31. Colyer, M. H., et al. Delayed intraocular foreign body removal without endophthalmitis during Operations Iraqi Freedom and Enduring Freedom. Ophthalmology. 114 (8), 1439-1447 (2007).
  32. Geggel, H. S., Maza, C. E. Anterior stromal puncture with the Nd:YAG laser. Investigative Ophthalmology & Visual Science. 31 (8), 1555-1559 (1990).
  33. Matthews, A., et al. Indentation and needle insertion properties of the human eye. Eye. 28 (7), 880-887 (2014).
  34. Rau, A., et al. The mechanics of corneal deformation and rupture for penetrating injury in the human eye. Injury. 49 (2), 230-235 (2018).
  35. Agrawal, R., Ho, S. W., Teoh, S. Pre-operative variables affecting final vision outcome with a critical review of ocular trauma classification for posterior open globe (zone III) injury. Indian Journal of Ophthalmology. 61 (10), 541 (2013).
  36. Knyazer, B., et al. Prognostic factors in posterior open globe injuries (zone-III injuries). Clinical & Experimental Ophthalmology. 36 (9), 836-841 (2008).
  37. Tan, J., et al. C3 Transferase-Expressing scAAV2 Transduces Ocular Anterior Segment Tissues and Lowers Intraocular Pressure in Mouse and Monkey. Molecular Therapy – Methods & Clinical Development. 17, 143-155 (2020).
  38. Bhattacharya, S. K., Gabelt, B. T., Ruiz, J., Picciani, R., Kaufman, P. L. Cochlin Expression in Anterior Segment Organ Culture Models after TGFβ2 Treatment. Investigative Ophthalmology & Visual Science. 50 (2), 551-559 (2009).
  39. Zhu, W., Godwin, C. R., Cheng, L., Scheetz, T. E., Kuehn, M. H. Transplantation of iPSC-TM stimulates division of trabecular meshwork cells in human eyes. Scientific Reports. 10 (1), 2905 (2020).

Play Video

Cite This Article
Boice, E. N., Snider, E. J. Anterior Segment Organ Culture Platform for Tracking Open Globe Injuries and Therapeutic Performance. J. Vis. Exp. (174), e62649, doi:10.3791/62649 (2021).

View Video