Summary

兔模型中的孤立肺灌注系统

Published: July 15, 2021
doi:

Summary

分离的兔肺制剂是肺部研究的黄金标准工具。本出版物旨在描述该技术,用于研究涉及气道反应性,肺保留以及肺移植和肺水肿的临床前研究的生理和病理机制。

Abstract

孤立的肺灌注系统已被广泛用于肺部研究,有助于从微观和宏观上阐明肺部的内部运作。该技术通过测量代谢活动和呼吸功能(包括循环物质与吸入或灌注物质的影响之间的相互作用)来表征肺生理学和病理学,如药物测试。虽然 体外 方法涉及组织的切片和培养,但孤立的 离体 肺灌注系统允许与完整的功能器官一起工作,从而可以在重建通气和灌注的同时研究连续的生理功能。然而,应该注意的是,缺乏中枢神经支配和淋巴引流的影响仍然需要充分评估。该协议旨在描述分离肺装置的组装,然后从实验实验动物中手术提取和插管肺和心脏,以及展示数据的灌注技术和信号处理。孤立肺的平均生存能力在5-8小时之间;在此期间,肺毛细血管通透性增加,导致水肿和肺损伤。保留的肺组织的功能通过毛细血管过滤系数(Kfc)来测量,用于确定肺水肿随时间的变化程度。

Introduction

布罗迪和迪克森于1903年首次描述了 离体 肺灌注系统 1。从那时起,它已成为研究肺的生理学,药理学,毒理学和生物化学的黄金标准工具23。该技术提供了一种一致且可重复的方法来评估肺移植的可行性,并确定炎症介质(如组胺,花生四烯酸代谢物和P物质等)的影响,以及它们在肺现象(如支气管收缩,肺不张和肺水肿)中的相互作用。分离的肺系统是揭示肺在消除一般循环中的生物胺方面的重要作用的关键技术45。此外,该系统已用于评估肺表面活性剂的生化6。在过去的几十年中, 离体 肺灌注系统已成为肺移植研究的理想平台7。2001年,由Stig Steen领导的一个团队描述了 离体 肺灌注系统的首次临床应用,用它来修复一名19岁供体的肺部,该供体最初因其受伤而被移植中心拒绝。收获左肺并灌注65分钟;之后,它被成功移植到一名患有COPD8的70岁男性身上。对使用 离体 灌注进行肺修复的进一步研究导致开发了多伦多延长肺灌注技术,以评估和治疗受伤的供体肺910。临床上, 离体 肺灌注系统已被证明是通过治疗和修复不合格的供体肺来增加供体池的安全策略,与标准供体供体相比,风险或结局没有显着差异10

隔离肺灌注系统的主要优点是,可以在人工实验室设置下保持其生理功能的完整功能器官中评估实验参数。此外,它允许测量和操作肺机械通气,以分析肺生理学的成分,如气道阻力,总血管阻力,气体交换和水肿形成,迄今为止无法在 实验室 动物体内精确测量2。值得注意的是,可以完全控制灌注肺部溶液的成分,从而能够添加物质以实时评估其效果并从灌注中收集样本以进行进一步研究11。使用孤立肺系统的研究人员应该记住,机械通气会导致肺组织腐烂,缩短其有用时间。在实验期间,这种机械参数的渐进性下降可以通过偶尔使肺部过度充气而显着延迟4。尽管如此,准备工作通常不能持续超过八个小时。 离体 肺灌注系统的另一个考虑因素是缺乏中枢神经调节和淋巴引流。它们缺失的影响尚未完全理解,并可能成为某些实验中偏见的来源。

分离肺灌注系统技术可以在兔模型中进行,具有高度的一致性和可重复性。这项工作描述了在墨西哥城国家呼吸测量研究所为兔子模型开发的 离体 孤立肺灌注技术的技术和外科手术程序,旨在分享见解,并为该实验模型应用的关键步骤提供明确的指导。

Protocol

兔模型中的分离灌注系统已在呼吸系统国家研究所的支气管反应亢进实验室中得到广泛应用。该协议包括新西兰兔子,体重约为2.5-3公斤。所有动物均按照墨西哥官方实验动物指南(NOM 062-ZOO-1999)和《实验动物护理和使用指南》(第8版,2011年)在标准动物饲养条件和随意喂养。该协议中提出的所有动物程序和动物护理方法之前都已获得呼吸系统国家研究所伦理委员会的批准。 <…

Representative Results

隔离的肺灌注系统允许器官操作活检,从灌注中收集样本以及实时收集生理参数的数据。分离的系统可用于测试涉及不同功能和肺部现象的许多假设,从代谢和酶活性到水肿形成和肺移植的保存期。 图1显示了完全组装的隔离式肺灌注系统以及通气系统和计算数据采集的图表。系统的灌注组件确保灌注液不断流过孤立的肺部。肺动脉管以提供流入灌注,?…

Discussion

这项工作展示了孤立肺灌注系统的一般观点,这是肺生理学研究中的一项基本技术。隔离式肺灌注系统在用途上具有高度的多功能性,并允许评估与测试各种假设相关的几个参数15。孤立的肺系统是一种具有全球影响力的工具,在过去十年中,它进一步确立了其与器官特异性评估的相关性,并扩展了其作为涉及间充质干细胞16 和CRISPR / Cas9基因组工程等的最先进?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢Bettina Sommer Cervantes博士对撰写本手稿的支持,并感谢Kitzia Elena Lara Safont对插图的支持。

Materials

2-Stop Tygon E-Lab Tubing, 3.17 mm ID, 12/pack, Black/White Hugo Sachs Elektronik (HSE) 73-1864
Adapter for Positive Pressure Ventilation on IPL-4 Hugo Sachs Elektronik (HSE) 73-4312
Adapter for Positive Pressure Ventilation on IPL-4 Hugo Sachs Elektronik (HSE) 73-4312
Alternative Pressure-Free Gas Supply for IPL-4: To supply the trachea with gas mixture different from room air during negative ventilation Hugo Sachs Elektronik (HSE) 73-4309
Base Unit for the Rabbit to Fetal Pig Isolated Perfused Lung Hugo Sachs Elektronik (HSE) 73-4138
Bovine serum A2:D41albumin lyophilized powder sigma 3912 500 g
Calcium chloride, CaCl2·2H2O. JT Baker 10035-04-8
Cryogenic vials Corning 430659 2 mL
D-glucosa, C6H12O6. sigma G5767
Differential Low Pressure Transducer DLP2.5, Range +- 2.5 cmH2O, HSE Connector Hugo Sachs Elektronik (HSE) 73-3882
Differential Pressure Transducer MPX, Range +- 100 cmH2O, HSE Connector Hugo Sachs Elektronik (HSE) 73-0064
Eppendorf tubes
Ethanol absolute HPLC grade Caledon
Falcon tubes 14 mL
Harvard Peristaltic Pump P-230 (Complete with Control Box and P-230 Motor Drive) Hugo Sachs Elektronik (HSE) 70-7001
Heated Linear Pneumotachometer 0 to 10 L/min flow range Hugo Sachs Elektronik (HSE) 59-9349
Heater Controller for Single Pneumotachometer 230 VAC, 50 Hz Hugo Sachs Elektronik (HSE) 59-9703
Heparin PISA 5000 UI
HPLC Column (C18 100A 5U) Alltech 98121213 150 mm x 4.6 mm
Hydrophilic Syringe Filter Millex SLLGR04NL 4 mm
IPL-4 Core System for Isolated Rabbit to Fetal Pig Lung, 230 Hugo Sachs Elektronik (HSE) 73-4296
IPL-4 Core System for Isolated Rabbit to Fetal Pig Lung, 230 V Hugo Sachs Elektronik (HSE) 73-4296
Jacketed Glass Reservoir for Buffer Solution, with Frit and Tubing, 6.0 L Hugo Sachs Elektronik (HSE) 73-0322
Lauda Thermostatic Circulator, Type E-103, 230 V/50 Hz, 3 L Bath Volume, Temperature Range 20 to 150°C Hugo Sachs Elektronik (HSE) 73-0125
Left Atrium Cannula for Rabbit with Basket, OD 5.9 mm Hugo Sachs Elektronik (HSE) 73-4162
Low Range Blood Pressure Transducer P75 for PLUGSYS Module Hugo Sachs Elektronik (HSE) 73-0020
Magnesium sulfate heptahydrate, MgSO4·7H2O JT Baker 10034-99-8
Microcentrifuge Tube Corning 430909
Negative Pressure Ventilation Control Option with Pressure Regulator for IPL-4 Hugo Sachs Elektronik (HSE) 73-4298
New Zeland rabbits
PISABENTAL (Pentobarbital sodium) PISA Q-7833-215
PLUGSYS Case, Type 603* 7 Hugo Sachs Elektronik (HSE) 73-0045
PLUGSYS TCM Time Counter Module Hugo Sachs Elektronik (HSE) 73-1750
PLUGSYS Transducer Amplifier Module (TAM-A) Hugo Sachs Elektronik (HSE) 73-0065
PLUGSYS Transducer Amplifier Module (TAM-D) Hugo Sachs Elektronik (HSE) 73-1793
PLUGSYS VCM-4R Ventilation Control Module with Pressure Regulator Hugo Sachs Elektronik (HSE) 73-1755
Potassium chloride, KCl. JT Baker 3040-01
Potassium dihydrogen phosphate, KH2PO4 JT Baker 7778-77-0
PROCIN (Xylacine clorhydrate) PISA Q-7833-099
Pulmonary Artery Cannula for Rabbit with Basket, OD 4.6 mm Hugo Sachs Elektronik (HSE) 73-4161
Scalpel knife
Serotonin 5-HT
Servo Controller for Perfusion (SCP Hugo Sachs Elektronik (HSE) 73-2806
Snap Cap Microcentrifuge Tube Costar 3620 1.7 mL
Sodium bicarbonate, NaHCO3 sigma S6014
Sodium chloride, NaCl. sigma S9888
Surgical gloves No. 7 1/2
Surgical gloves No. 8
Taygon tubes Masterflex
Tracheal Cannula for Rabbit, OD 5.0 mm Hugo Sachs Elektronik (HSE) 73-4163

References

  1. Dixon, W. E. Contributions to the physiology of the lungs: Part I. The bronchial muscles, their innervation, and the action of drugs upon them. The Journal of Physiology. 29 (2), 97-173 (1903).
  2. Nelson, K., et al. Animal models of ex vivo lung perfusion as a platform for transplantation research. World Journal of Experimental Medicine. 4 (2), 7-15 (2014).
  3. Roman, M. A., Nair, S., Tsui, S., Dunning, J., Parmar, J. S. Ex vivo lung perfusion: a comprehensive review of the development and exploration of future trends. Transplantation. 96 (6), 509-518 (2013).
  4. Delaunois, A., Gustin, P., Ansay, M. Multiple muscarinic receptor subtypes mediating pulmonary oedema in the rabbit. Pulmonary Pharmacology. 7 (3), 185-193 (1994).
  5. Delaunois, A., Gustin, P., Vargas, M., Ansay, M. Protective effect of various antagonists of inflammatory mediators against paraoxon-induced pulmonary edema in the rabbit. Toxicology and Applied Pharmacology. 132 (2), 343-345 (1995).
  6. Barr, H. A., Nicholas, T. E., Power, J. H. Control of alveolar surfactant in rats at rest and during prolonged hyperpnoea: pharmacological evidence for two tissue pools of surfactant. British Journal of Pharmacology. 93 (3), 473-482 (1988).
  7. Machuca, T. N., Cypel, M. Ex vivo lung perfusion. Journal of Thoracic Disease. 6 (8), 1054-1062 (2014).
  8. Steen, S., et al. First human transplantation of a nonacceptable donor lung after reconditioning ex vivo. The Annals of Thoracic Surgery. 83 (6), 2191-2194 (2007).
  9. Cypel, M., et al. Technique for prolonged normothermic ex vivo lung perfusion. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart and Lung Transplantation. 27 (12), 1319-1325 (2008).
  10. Cypel, M., et al. Normothermic ex vivo lung perfusion in clinical lung transplantation. New England Journal of Medicine. 364 (15), 1431-1440 (2011).
  11. Kao, C. C., Parulekar, A. D. Is perfusate exchange during. Annals of Translational Medicine. 8 (3), 43 (2020).
  12. Alquicira-Mireles, J. . Participación de la serotonina en los cambios de permeabilidad vascular en la preservación pulmonar en conejo. , (2013).
  13. Arreola-Ramírez, J. L. . Papel de la liberación de acetilcolina y sustancia P en el deterioro de la función pulmonar en un modelo experimental de preservación pulmonar en conejo. , (2009).
  14. Isolated lung perfusion systems for small to large animal models. Harvard Apparatus. Hugo Sachs Elektronik (HSE) Available from: https://www.harvardapparatus.com/media/harvard/pdf/Isolated%20Lung%20Perfusion%20Systems%20Brochure.pdf (2021)
  15. Jiao, G. Evolving trend of EVLP: Advancements and emerging pathways. SN Comprehensive Clinical Medicine. 1 (4), 287-303 (2019).
  16. Mordant, P., et al. Mesenchymal stem cell treatment is associated with decreased perfusate concentration of interleukin-8 during ex vivo perfusion of donor lungs after 18-hour preservation. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart and Lung Transplantation. 35 (10), 1245-1254 (2016).
  17. Cowan, P. J., Hawthorne, W. J., Nottle, M. B. Xenogeneic transplantation and tolerance in the era of CRISPR-Cas9. Current Opinion in Organ Transplantation. 24 (1), 5-11 (2019).
  18. Collaborators, G. C. R. D. Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Respiratory Medicine. 8 (6), 585-596 (2020).
  19. Bravo-Reyna, C. C., Torres-Villalobos, G., Aguilar-Blas, N., Frías-Guillén, J., Guerra-Mora, J. R. Comparative study of capillary filtration coefficient (Kfc) determination by a manual and automatic perfusion system. Step by step technique review. Physiological Research. 68 (6), 901-908 (2019).
  20. Pereira, M. R., et al. COVID-19 in solid organ transplant recipients: Initial report from the US epicenter. American Journal of Transplantation. 20 (7), 1800-1808 (2020).
check_url/62734?article_type=t

Play Video

Cite This Article
Pacheco-Baltazar, A., Arreola-Ramírez, J. L., Alquicira-Mireles, J., Segura-Medina, P. Isolated Lung Perfusion System in the Rabbit Model. J. Vis. Exp. (173), e62734, doi:10.3791/62734 (2021).

View Video