Summary

如何在fNIRS超扫描研究中计算和验证脑间同步

Published: September 08, 2021
doi:

Summary

当个体的耦合大脑相互协调时,它们越来越多地由脑间同步(IBS)表示,主要使用与fNIRS同时记录大脑的信号(即超扫描)。在fNIRS超扫描研究中,IBS通常通过小波变换相干(WTC)方法进行评估,因为它在将时间序列扩展到时频空间方面具有优势,其中振荡可以以高度直观的方式看到。观察到的IBS可以通过试验,伴侣和条件的基于排列的随机配对来进一步验证。在这里,提出了一个方案来描述如何通过fNIRS技术获取脑信号,通过WTC方法计算IBS,并在超扫描研究中通过排列验证IBS。此外,我们还讨论了使用上述方法时的关键问题,包括fNIRS信号的选择,数据预处理方法以及可选的计算参数。总之,使用WTC方法和排列是在fNIRS超扫描研究中分析IBS的潜在标准管道,有助于IBS的再现性和可靠性。

Abstract

当个体的耦合大脑相互协调时,它们越来越多地由脑间同步(IBS)表示,主要使用与fNIRS同时记录大脑的信号(即超扫描)。在fNIRS超扫描研究中,IBS通常通过小波变换相干(WTC)方法进行评估,因为它在将时间序列扩展到时频空间方面具有优势,其中振荡可以以高度直观的方式看到。观察到的IBS可以通过试验,伴侣和条件的基于排列的随机配对来进一步验证。在这里,提出了一个方案来描述如何通过fNIRS技术获取脑信号,通过WTC方法计算IBS,并在超扫描研究中通过排列验证IBS。此外,我们还讨论了使用上述方法时的关键问题,包括fNIRS信号的选择,数据预处理方法以及可选的计算参数。总之,使用WTC方法和排列是在fNIRS超扫描研究中分析IBS的潜在标准管道,有助于IBS的再现性和可靠性。

Introduction

当人们与他人协调时,他们的大脑和身体通过不断的相互适应成为一个耦合单元。大脑之间的耦合可以通过超扫描方法通过脑间同步(IBS)来表示,该方法同时记录两个或多个个体的大脑信号1。事实上,越来越多的fNIRS/EEG超扫描研究发现IBS在各种协作环境中,包括手指敲击2,团体行走3,打鼓4,吉他演奏5和唱歌/哼唱6。fNIRS广泛用于社交互动期间IBS的研究,因为它在相对自然的环境中(与fMRI / EEG相比)对头部/身体运动的限制较小7。

本文提出了一种在fNIRS超扫描研究中通过小波变换相干性(WTC)方法计算IBS的协议。WTC是一种在时频平面上评估两个运动信号之间互相关的方法,因此可以提供比传统相关分析(例如,皮尔逊相关和互相关)更多的信息,后者仅在时域8中。此外,血液动力学信号被转换成小波分量,可以有效地消除低频噪声。虽然WTC很耗时,但它一直是最常用的计算IBS的方法,模仿9,合作行为10,口头交流11,决策12和互动学习13。

本文还介绍了如何通过基于排列的试验、条件和参与者的随机平价来验证 IBS。超扫描研究中的IBS总是被提出来跟踪个体之间的在线社交互动,同时也可以通过其他解释来解释,例如刺激相似性,运动相似性或条件相似性14。排列检验,也称为随机化检验,可以通过对观测到的数据15进行重采样来利用来检验上述零假设。通过使用排列,调查已识别的IBS是否特定于交互行为是有用的,从二元组内的IBS调制到伴侣组16之间。

这里描述的协议详细介绍了如何通过fNIRS技术获取脑信号,通过WTC方法计算IBS,以及如何通过超扫描研究中的排列测试来验证IBS。本研究旨在研究在社会协调过程中,音乐仪表是否引发了特权IBS。根据先前发现中IBS的位置,在额叶皮层中记录了大脑信号1。这个实验任务最初是由Konvalinka和她的17大学开发的,参与者被要求在听完仪表或非仪表刺激后,用伴侣或他们自己的听觉反馈敲击手指。

Protocol

这里提出的方案得到了华东师范大学人类研究保护委员会的批准。 1. 实验准备 参与者 通过校园广告招收一批本科生和研究生,并给予金钱补偿。 确保参与者是右撇子,并且具有正常或矫正至正常的视力和听力。确保他们没有学习过音乐或学习音乐的时间少于3年。 随机匹配二元组的学生。为了控制伴侣熟悉度对社会协调的潜在影响<sup class="xref"…

Representative Results

结果表明,在仪表协调条件下,通道5处存在IBS,而在其他条件下(即仪表独立性,非仪表协调性,非仪表独立性;图 2A)。在通道5处,仪表协调条件下的IBS明显高于非仪表协调和仪表独立条件下的相干值(图2B)。通道5大致属于左背外侧前额叶皮层(DLPFC;布罗德曼区9)。此外,排列分析表明,观察到的IBS可能出现在一个二元组的两个个体中,他们试图…

Discussion

该协议提供了一个分步程序来计算和验证IBS,使用fNIRS超扫描方法同时收集两个参与者的大脑信号。下面讨论 fNIRS 数据预处理、IBS 计算、统计和 IBS 验证中涉及的一些关键问题。

数据预处理
有必要在超扫描研究中预处理fNIRS数据,以便从可能的噪声(即运动伪影,系统组件)中提取真实信号。虽然在早期的fNIRS超扫描研究中,在分析IBS时跳过了预处理10,32,33?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本研究由国家自然科学基金(31872783、31800951)资助。

Materials

Computer Hewlett-Packard Development Company, L.P. HP S01-pF157mcn
Earphone Royal Philips Electronics, Eindhoven, The Netherlands SHE2405BK/00
EEG cap Compumedics Neuroscan, Charlotte, USA 64-channel Quik-Cap
E-Prime software Psychology Software Tools, Inc., Pittsburgh, USA E-Prime 3
fNIRS system Hitachi Medical Corporation, Tokyo, Japan ETG-7100 Optical Topography System
MATLAB 2014b The MathWorks, Inc., Natick, MA MATLAB 2014b
MuseScore Musescore Company, Belgium MuseScore 3.6.2.548021803
Swimming cap Decathlon Group, Villeneuve-d'Ascq, France 1681552

References

  1. Kingsbury, L., Hong, W. A Multi-Brain Framework for Social Interaction. Trends in Neurosciences. 43 (9), 651-666 (2020).
  2. Konvalinka, I., Bauer, M., Stahlhut, C., Hansen, L. K., Roepstorff, A., Frith, C. D. Frontal alpha oscillations distinguish leaders from followers: multivariate decoding of mutually interacting brains. NeuroImage. 94, 79-88 (2014).
  3. Ikeda, S., et al. Steady Beat Sound Facilitates both Coordinated Group Walking and Inter-Subject Neural Synchrony. Frontiers in Human Neuroscience. 11, 147 (2017).
  4. Duan, L., et al. Cluster imaging of multi-brain networks (CIMBN): a general framework for hyperscanning and modeling a group of interacting brains. Frontiers in Neuroscience. 9, 267 (2015).
  5. Sanger, J., Muller, V., Lindenberger, U. Intra- and interbrain synchronization and network properties when playing guitar in duets. Frontiers in Human Neuroscience. 6, 312 (2012).
  6. Muller, V., Delius, J. A. M., Lindenberger, U. Hyper-frequency network topology changes during choral singing. Frontiers in Physiology. 10, 207 (2019).
  7. Egetemeir, J., Stenneken, P., Koehler, S., Fallgatter, A. J., Herrmann, M. J. Exploring the neural basis of real-life joint action: Measuring brain activation during joint table setting with functional near-infrared spectroscopy. Frontiers in Human Neuroscience. 5, 95 (2011).
  8. Grinsted, A., Moore, J. C., Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics. 11 (5-6), 561-566 (2004).
  9. Holper, L., Scholkmann, F., Wolf, M. Between-brain connectivity during imitation measured by fNIRS. NeuroImage. 63 (1), 212-222 (2012).
  10. Cui, X., Bryant, D. M., Reiss, A. L. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. NeuroImage. 59 (3), 2430-2437 (2012).
  11. Jiang, J., Dai, B., Peng, D., Zhu, C., Liu, L., Lu, C. Neural synchronization during face-to-face communication. Journal of Neuroscience. 32 (45), 16064-16069 (2012).
  12. Tang, H., Mai, X., Wang, S., Zhu, C., Krueger, F., Liu, C. Interpersonal brain synchronization in the right temporo-parietal junction during face-to-face economic exchange. Social Cognitive and Affective Neuroscience. 11 (1), 23-32 (2016).
  13. Pan, Y., Novembre, G., Song, B., Li, X., Hu, Y. Interpersonal synchronization of inferior frontal cortices tracks social interactive learning of a song. NeuroImage. 183, 280-290 (2018).
  14. Konvalinka, I., Roepstorff, A. The two-brain approach: how can mutually interacting brains teach us something about social interaction. Frontiers in Human Neuroscience. 6, 215 (2012).
  15. Karlsson, A. Permutation, parametric, and bootstrap tests of hypotheses. Journal of the Royal Statistical Society Series a-Statistics in Society. 169, 171 (2006).
  16. Ayrolles, A., et al. HyPyP: a Hyperscanning python pipeline for inter-brain connectivity analysis. Social Cognitive and Affective Neuroscience. 16 (1-2), 72-83 (2021).
  17. Konvalinka, I., Vuust, P., Roepstorff, A., Frith, C. D. Follow you, follow me: continuous mutual prediction and adaptation in joint tapping. Quarterly Journal of Experimental Psychology. 63 (11), 2220-2230 (2010).
  18. Majolo, B., et al. Human friendship favours cooperation in the iterated prisoner’s dilemma. Behaviour. 143, 1383-1395 (2006).
  19. . Homer2 Available from: https://www.nitrc.org/projects/hitachi2nirs (2021)
  20. . Hitachi2nirs Available from: https://www.nitrc.org/projects/hitachi2nirs (2021)
  21. . xjview Available from: https://www.alivelearn.net/xjview/ (2021)
  22. . Groppe’s scripts in MathWork Available from: https://uk.mathworks.com/matlabcentral/profile/authors/1948879 (2021)
  23. Zhang, Y., Brooks, D. H., Franceschini, M. A., Boas, D. A. Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging. Journal of Biomedical Optics. 10 (1), 011014 (2005).
  24. Cui, X., Bray, S., Reiss, A. L. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. NeuroImage. 49 (4), 3039-3046 (2010).
  25. Lumley, T., Diehr, P., Emerson, S., Chen, L. The importance of the normality assumption in large public health data sets. Annual Review of Public Health. 23 (1), 151-169 (2002).
  26. Benjamini, Y., Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics. 29 (4), 1165-1188 (2001).
  27. Miller, B. L., Cummings, J. L. . The human frontal lobes: Functions and disorders. , (2007).
  28. vanden Bos, W., van Dijk, E., Westenberg, M., Rombouts, S. A. R. B., Crone, E. A. What motivates repayment? Neural correlates of reciprocity in the Trust Game. Social Cognitive and Affective Neuroscience. 4 (3), 294-304 (2009).
  29. Corbetta, M., Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience. 3 (3), 201-215 (2002).
  30. Ferreri, L., Aucouturier, J. J., Muthalib, M., Bigand, E., Bugaiska, A. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study. Frontiers in Human Neuroscience. 7, 779 (2013).
  31. Cheng, X., Li, X., Hu, Y. Synchronous brain activity during cooperative exchange depends on gender of partner: A fNIRS-based hyperscanning study. Human Brain Mapping. 36 (6), 2039-2048 (2015).
  32. Hu, Y., Hu, Y., Li, X., Pan, Y., Cheng, X. Brain-to-brain synchronization across two persons predicts mutual prosociality. Social Cognitive and Affective Neuroscience. 12 (12), 1835-1844 (2017).
  33. Delgado Reyes, L. M., Bohache, K., Wijeakumar, S., Spencer, J. P. Evaluating motion processing algorithms for use with functional near-infrared spectroscopy data from young children. Neurophotonics. 5 (2), 025008 (2018).
  34. Zhang, Y., Brooks, D. H., Franceschini, M. A., Boas, D. A. Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging. Journal of Biomedical Optics. 10 (1), 11014 (2005).
  35. Molavi, B., Dumont, G. A. Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiological Measurement. 33 (2), 259-270 (2012).
  36. Scholkmann, F., Spichtig, S., Muehlemann, T., Wolf, M. How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiological Measurement. 31 (5), 649 (2010).
  37. Izzetoglu, M., Chitrapu, P., Bunce, S., Onaral, B. Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering. Biomedical Engineering Online. 9 (1), (2010).
  38. Barker, J. W., Aarabi, A., Huppert, T. J. Autoregressive model based algorithm for correcting motion and serially correlated errors in fNIRS. Biomedical Optics Express. 4 (8), 1366-1379 (2013).
  39. Gagnon, L., et al. Short separation channel location impacts the performance of short channel regression in NIRS. NeuroImage. 59 (3), 2518 (2012).
  40. Di Lorenzo, R., et al. Brain responses to faces and facial expressions in 5-month-olds: An fNIRS study. Frontiers in Psychology. 10, 1240 (2019).
  41. Duan, L., et al. Wavelet-based method for removing global physiological noise in functional near-infrared spectroscopy. Biomed Opt Express. 9 (8), 3805-3820 (2018).
  42. Hamilton, A. Hype, hyperscanning and embodied social neuroscience. PsyArXiv. , (2020).
  43. Zhang, X., Noah, J. A., Dravida, S., Hirsch, J. Optimization of wavelet coherence analysis as a measure of neural synchrony during hyperscanning using functional near-infrared spectroscopy. Neurophotonics. 7 (1), 015010 (2020).
  44. Ikeda, S., et al. Steady beat sound facilitates both coordinated group walking and inter-subject neural synchrony. Frontiers in Human Neuroscience. 11, 147 (2017).
  45. Osaka, N., et al. How two brains make one synchronized mind in the inferior frontal cortex: fNIRS-based hyperscanning during cooperative singing. Frontiers in Psychology. 6, 1811 (2015).
  46. Abrams, D. A., et al. Inter-subject synchronization of brain responses during natural music listening. European Journal of Neuroscience. 37 (9), 1458-1469 (2013).
  47. Hou, Y., Song, B., Hu, Y., Pan, Y., Hu, Y. The averaged inter-brain coherence between the audience and a violinist predicts the popularity of violin performance. NeuroImage. 211, 116655 (2020).
  48. Baker, J. M., et al. Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning. Scientific Reports. 6, 26492 (2016).
  49. Kruppa, J. A., et al. Brain and motor synchrony in children and adolescents with ASD-a fNIRS hyperscanning study. Social Cognitive and Affective Neuroscience. 16 (1-2), 103-116 (2021).
  50. Liu, T., Duan, L., Dai, R., Pelowski, M., Zhu, C. Team-work, Team-brain: Exploring synchrony and team interdependence in a nine-person drumming task via multiparticipant hyperscanning and inter-brain network topology with fNIRS. NeuroImage. 237, 118147 (2021).
  51. Dai, B., et al. Neural mechanisms for selectively tuning in to the target speaker in a naturalistic noisy situation. Nature Communications. 9 (1), 2405 (2018).
  52. Li, R., Mayseless, N., Balters, S., Reiss, A. L. Dynamic inter-brain synchrony in real-life inter-personal cooperation: A functional near-infrared spectroscopy hyperscanning study. NeuroImage. 238, 118263 (2021).
  53. Boas, D. A., Dale, A. M., Franceschini, M. A. Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. NeuroImage. 23, 275-288 (2004).
  54. Ferrari, M., Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage. 63 (2), 921-935 (2012).
  55. Mu, Y., Guo, C., Han, S. Oxytocin enhances inter-brain synchrony during social coordination in male adults. Social Cognitive and Affective Neuroscience. 11 (12), 1882-1893 (2016).
  56. Chen, J., et al. Shared memories reveal shared structure in neural activity across individuals. Nature Neuroscience. 20 (1), 115-125 (2017).
  57. Regev, M., et al. Propagation of Information Along the Cortical Hierarchy as a Function of Attention While Reading and Listening to Stories. Cerebral Cortex. 29 (10), 4017-4034 (2019).
check_url/62801?article_type=t

Play Video

Cite This Article
Hu, Y., Wang, Z., Song, B., Pan, Y., Cheng, X., Zhu, Y., Hu, Y. How to Calculate and Validate Inter-brain Synchronization in a fNIRS Hyperscanning Study. J. Vis. Exp. (175), e62801, doi:10.3791/62801 (2021).

View Video