Summary

慢病毒介导的shRNA递送到hESC和NPC,使用低成本阳离子聚合物聚乙亚胺(PEI)

Published: May 24, 2022
doi:

Summary

利用低成本的阳离子聚合物聚乙氨基亚胺(PEI),我们生产了慢病毒颗粒,用于H9人胚胎干细胞(hESCs)中shRNA的稳定表达,并高效瞬时转导H9衍生的神经祖细胞(NPC)。

Abstract

目前的方案描述了使用慢病毒颗粒以高效率将短发夹RNA(shRNA)递送到人胚胎干细胞(hESCs)以及来自hESCs的神经祖细胞(NPC)。通过使用进入载体(携带shRNA)共转染HEK293T细胞以及使用低成本阳离子聚合物聚乙基亚胺(PEI)的包装质粒(pAX和pMD2.G)来生成慢病毒颗粒。使用超速离心浓缩病毒颗粒,这导致平均滴度高于5×107。hESCs和NPC都可以使用这些慢病毒颗粒高效感染,如嘌呤霉素的选择和在hESCs中的稳定表达以及NPC中的瞬时GFP表达所示。此外,蛋白质印迹分析显示,shRNA靶向基因的表达显著降低。此外,这些细胞保留了它们的多能性和分化潜力,正如它们随后分化成不同的CNS谱系所证明的那样。目前的协议涉及shRNA的交付;然而,相同的方法可用于cDNA的异位表达以进行过表达研究。

Introduction

来自囊胚内细胞团的人胚胎干细胞(hESCs)是多能的,可以根据 体外 条件下的外部因素分化成不同的细胞类型12。为了充分利用hESC的潜力,必须为这些细胞提供快速可靠的基因递送方法。传统上,所使用的技术大致可分为两种类型:非病毒和病毒基因递送系统34。更常用的非病毒基因递送系统是脂质感染、电穿孔和细胞核感染。非病毒递送系统是有利的,因为插入突变较少,免疫原性总体上降低56。然而,这些方法导致转染效率低下和瞬时基因表达持续时间短,这是长期分化研究的主要限制7.与脂质感染相比,电穿孔可提高转染效率。然而,它导致超过50%的细胞死亡8910。使用细胞核感染,可以通过结合脂质感染和电穿孔来提高细胞存活率和转染效率,但该方法需要细胞特异性缓冲液和专用设备,因此,对于放大应用来说,成本相当高1112

相比之下,病毒载体在转导后显示出更好的转染效率以及整体低细胞毒性。此外,递送的基因稳定表达,因此,这种方法非常适合长期研究13。将基因递送到hESC中最常用的病毒载体是慢病毒载体(LVS),使用高滴度病毒颗粒1415可以提供超过80%的转导效率。脂质法转染和CaPO4 沉淀是瞬时转染HEK293T细胞或其衍生物以及具有基因转移载体的包装质粒以产生慢病毒颗粒16的最常用方法之一。虽然脂肪法感染具有良好的转染效率和低细胞毒性,但该技术受到其成本的阻碍,并且扩大规模以获得高滴度的慢病毒颗粒将非常昂贵。CaPO4 沉淀的转染效率与使用脂质法的转染效率相对相似。尽管CaPO4 沉淀具有成本效益,但在转染后会导致明显的细胞死亡,这使得标准化和避免批次间差异变得困难17.在这种情况下,开发一种具有高转染效率,低细胞毒性和成本效益的方法对于生产用于hESC的高滴度慢病毒颗粒至关重要。

聚乙基亚胺(PEI)是一种阳离子聚合物,可以高效率转染HEK293T细胞而没有太大的细胞毒性,并且与基于脂质感染的方法相比,成本可以忽略不计18。在这种情况下,PEI可用于通过使用各种技术从培养上清液中浓缩慢病毒颗粒来生产高滴度LVS的放大应用。本文介绍了使用 PEI 转染 HEK293T 细胞,以及通过蔗糖缓冲液进行超速离心的慢病毒载体浓缩。使用这种方法,我们定期获得远高于5 x 107 IU / mL的滴度,并且批次间差异很小。该方法简单,直接且具有成本效益,适用于将基因递送到hESC和hESCs衍生细胞的放大应用。

Protocol

1. 使用 PEI 或脂质体酪胺 3000 试剂转染 HEK293T 细胞 在DMEM + 10S + 1x青霉素/链霉素中在37°C下在具有5%CO2和21%O 2气氛的加湿培养箱中培养HEK293T细胞,直到它们在接种转染前90%汇合。使用相对较低的细胞传代数进行高滴度病毒生产(理想情况下小于P30)。 在100mm组织培养板中的10mL完全生长培养基中接种4×106 个细胞,并在具有5%CO2和21 %O 2气?…

Representative Results

基因转移后,不可避免地需要高活性的hESC。尽管在hESCs电穿孔后努力并优化了方案以减少细胞死亡,但在电穿孔这些细胞后仍然观察到超过50%的细胞死亡,以及低转染效率20。慢病毒介导的基因转移不仅导致基因转移的高效率,而且在转导后显示出高水平的细胞活力。以下结果给出了两种方法:一种是使用GFP作为报告基因,在hESCs衍生的NPC中瞬时表达,另一种是使用嘌呤霉素稳定…

Discussion

出于研究或临床目的对干细胞进行基因修饰的能力受到技术和对hESCs生物学的基本理解的限制。在小鼠ESC中显示出巨大潜力的技术,如脂质渗透和电穿孔,对hESCs来说效率不高,众所周知,hESCs很难通过常规方法进行基因传递20。这一概念不仅优化了现有技术,还开发了提高hESC转染效率的新方法。这些新发展的重点是高效和稳定的基因递送到hESC,同时在很长一段时间内保持对hESC?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了阿拉伯联合酋长国大学(UAEU)的研究资助,赠款#31R170(扎耶德健康科学中心)和#12R010(UAEU-AUA赠款)的支持。我们感谢兰德尔·莫尔斯教授(纽约州奥尔巴尼沃兹沃思中心)帮助我们编辑手稿的风格和语法。

所有数据均可根据要求提供。

Materials

2-Mercaptoethanol Invitrogen 31350010
38.5 mL, Sterile + Certified Free Open-Top Thinwall Ultra-Clear Tubes Beckman Coulter C14292
Accutase Stem Cell Technologies 7920
bFGF Recombinant human Invitrogen PHG0261
Bovine serum albumin FRAC V Invitrogen 15260037
Corning Matrigel Basement Membrane Matrix, LDEV-free Corning 354234
Cyclopamine Stem Cell Technologies 72074
DMEM media Invitrogen 11995073
DMEM Nutrient mix F12  Invitrogen 11320033
DPBS w/o: Ca and Mg PAN Biotech P04-36500
Fetal bovie serum Invitrogen 10270106
GAPDH (14C10) Rabbit mAb Antibody CST 2118S
Gentle Cell Dissociation Reagent Stem Cell Technologies 7174
HyClone Non Essential Amino Acids (NEAA) 100X Solution GE healthcare SH30238.01
L Glutamine, 100X  Invitrogen 2924190090
L2HGDH Polyclonal antibody Proteintech 15707-1-AP
L2HGDH shRNA Macrogen Seq: CGCATTCTTCATGTGAGAAAT
Lipofectamine 3000 kit Thermo Fisher L3000001
mTesR1 complete media Stem Cell Technologies 85850
Neurobasal medium 1X CTS Invitrogen A1371201
Neuropan 2 Supplement 100x PAN Biotech P07-11050
Neuropan 27 Supplement 50x PAN Biotech P07-07200
Penicillin streptomycin SOL Invitrogen 15140122
pLKO.1 TRC vector Addgene 10878
pLL3.7 vector  Addgene 11795
pMD2.G Addgene 12259
Polybrene infection reagent Sigma TR1003- G
Polyethylenimine, branched Sigma 408727
psPAX2.0 Addgene 12260
Purmorphamine Tocris 4551/10
Puromycin Invitrogen A1113802
ROCK inhibitor Y-27632
dihydrochloride 
Tocris 1254
SB 431542 Tocris 1614/10
Trypsin .05% EDTA  Invitrogen 25300062
XAV 939 Tocris 3748/10

References

  1. Thomson, J. A., et al. Embryonic stem cell lines derived from human blastocysts. Science. 282 (5391), 1145-1147 (1998).
  2. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., Bongso, A. Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nature Biotechnology. 18 (4), 399-404 (2000).
  3. Strulovici, Y., Leopold, P. L., O’Connor, T. P., Pergolizzi, R. G., Crystal, R. G. Human embryonic stem cells and gene therapy. Molecular Therapy. 15 (5), 850-866 (2007).
  4. Kane, N., McRae, S., Denning, C., Baker, A. Viral and nonviral gene delivery and its role in pluripotent stem cell engineering. Drug Discovery Today. Technologies. 5 (4), 105 (2008).
  5. Li, S. D., Huang, L. Nonviral is superior to viral gene delivery. Journal of Controlled Release. 123 (3), 181-183 (2007).
  6. Mastrobattista, E., Bravo, S. A., vander Aa, M., Crommelin, D. J. Nonviral gene delivery systems: From simple transfection agents to artificial viruses. Drug Discovery Today. Technologies. 2 (1), 103-109 (2005).
  7. Cao, F., et al. Comparison of gene-transfer efficiency in human embryonic stem cells. Molecular Imaging and Biology. 12 (1), 15-24 (2010).
  8. Mohr, J. C., de Pablo, J. J., Palecek, S. P. Electroporation of human embryonic stem cells: Small and macromolecule loading and DNA transfection. Biotechnology Progress. 22 (3), 825-834 (2006).
  9. Sukhorukov, V. L., et al. Surviving high-intensity field pulses: Strategies for improving robustness and performance of electrotransfection and electrofusion. The Journal of Membrane Biology. 206 (3), 187-201 (2005).
  10. Floch, V., et al. Cationic phosphonolipids as non viral vectors for DNA transfection in hematopoietic cell lines and CD34+ cells. Blood Cells, Molecules and Diseases. 23 (1), 69-87 (1997).
  11. Lakshmipathy, U., et al. Efficient transfection of embryonic and adult stem cells. Stem Cells. 22 (4), 531-543 (2004).
  12. Siemen, H., et al. Nucleofection of human embryonic stem cells. Stem Cells and Development. 14 (4), 378-383 (2005).
  13. Zhang, X., Godbey, W. T. Viral vectors for gene delivery in tissue engineering. Advanced Drug Delivery Reviews. 58 (4), 515-534 (2006).
  14. Ma, Y., Ramezani, A., Lewis, R., Hawley, R. G., Thomson, J. A. High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells. 21 (1), 111-117 (2003).
  15. Gropp, M., et al. Stable genetic modification of human embryonic stem cells by lentiviral vectors. Molecular Therapy. 7 (2), 281-287 (2003).
  16. Tan, E., Chin, C. S. H., Lim, Z. F. S., Ng, S. K. HEK293 cell line as a platform to produce recombinant proteins and viral vectors. Frontiers in Bioengineering and Biotechnology. 9, 796991 (2021).
  17. Merten, O. W., Hebben, M., Bovolenta, C. Production of lentiviral vectors. Molecular Therapy: Methods & Clinical Development. 3, 16017 (2016).
  18. Lungwitz, U., Breunig, M., Blunk, T., Göpferich, A. Polyethylenimine-based nonviral gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics. 60 (2), 247-266 (2005).
  19. Parween, S., et al. Higher O-GlcNAc levels are associated with defects in progenitor proliferation and premature neuronal differentiation during in-vitro human embryonic cortical neurogenesis. Frontiers in Cellular Neuroscience. 11, 415 (2017).
  20. Weissinger, F., et al. Gene transfer in purified human hematopoietic peripheral-blood stem cells by means of electroporation without prestimulation. Journal of Laboratory and Clinical Medicine. 141 (2), 138-149 (2003).
  21. Cui, Y., et al. Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood. 99 (2), 399-408 (2002).
  22. Yu, X., et al. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells. Molecular Therapy. 7 (6), 827-838 (2003).
  23. Sweeney, N. P., Vink, C. A. The impact of lentiviral vector genome size and producer cell genomic to gag-pol mRNA ratios on packaging efficiency and titre. Molecular Therapy – Methods & Clinical Development. 21, 574-584 (2021).
check_url/63953?article_type=t

Play Video

Cite This Article
Sheikh, M. A., Ansari, S. A. Lentiviral Mediated Delivery of shRNAs to hESCs and NPCs Using Low-cost Cationic Polymer Polyethylenimine (PEI). J. Vis. Exp. (183), e63953, doi:10.3791/63953 (2022).

View Video