Summary

一套成熟的分析工具,用于研究脂质赋形剂的固态变化

Published: August 09, 2022
doi:

Summary

该出版物展示了X射线衍射和差示扫描量热法作为研究脂质赋形剂(LBEs)固态的金标准的应用。了解LBEs的固态变化及其对医药产品性能的影响是生产稳健的脂质剂型的关键因素。

Abstract

脂质赋形剂 (LBE) 具有低毒、生物相容性和天然性,其应用支持制药生产的可持续性。然而,主要的挑战是它们的固态不稳定,影响了药品的稳定性。用于加工的脂质的关键物理性质(例如熔体温度和粘度,流变性等)与其分子结构和结晶度有关。添加剂以及制造过程中涉及的热应力和机械应力会影响脂质的固态,从而影响其药品的性能。因此,了解固态的变化至关重要。在这项工作中,引入了粉末X射线衍射和差示扫描量热法(DSC)的组合作为表征脂质固态的金标准。X射线衍射是筛选多晶型和晶体生长的最有效方法。X射线衍射的多晶型排列和薄片长度分别表征了广角和小角区域。小角X射线散射(SAXS)区域可以进一步用于研究晶体生长。可以指示相变和分离。DSC用于筛选脂质的热行为,估计脂质基质中添加剂和/或活性药物成分(API)的混溶性,并提供相图。介绍了四个案例研究,其中LBEs分别用作包衣材料或封装基质以提供脂质包覆的多颗粒系统和脂质纳米悬浮液。研究了脂质固态及其在储存过程中的潜在变化,并与API释放中的改变相关。定性显微镜方法,如偏振光显微镜和扫描电子显微镜是研究微观水平结晶的补充工具。应根据所选的制造工艺添加进一步的分析方法。应仔细了解结构-功能-加工性关系,以设计稳健稳定的脂质基药品。

Introduction

脂质是一类含有长链脂肪烃及其衍生物的材料。它们涵盖了广泛的化学结构,包括脂肪酸、酰基甘油、甾醇和甾醇酯、蜡、磷脂和鞘脂1。脂质作为药用赋形剂的使用始于1960年,用于将药物包埋在蜡基质中以提供缓释制剂2。此后,脂质赋形剂(LBEs)在改良药物释放、掩味、药物包封和提高药物生物利用度等各种应用中受到广泛关注。LBEs可以通过多功能制造工艺应用于各种药物剂型,即热熔包衣,喷雾干燥,固体脂质挤出,3D打印,压片和高压均质等。片剂、口腔崩解膜、多颗粒系统、纳米和微粒、颗粒和 3D 打印形式等剂型的结果是234

LBE具有“一般公认的安全”状态,毒性低,生物相容性好,患者耐受性更高。它们的天然来源和广泛的可用性使它们能够为绿色和可持续的制药生产赋能。然而,LBE的使用与不稳定的剂型有关。储存后脂质基产品性质的改变已被广泛报道。LBEs的固态和脂质多态性的存在被认为是脂质基剂型5678不稳定的主要原因。

脂质的力学和物理性质与其结晶性质及其晶体网络结构密切相关,表现出不同的结构组织层次。当脂质用于药品制造时,晶体结构受所施加的工艺参数的影响,例如温度、有机溶剂、剪切力和机械力,进而影响药品的性能579,10,1112.要了解这种结构-功能关系,重要的是要了解脂质结晶的基础和晶体结构以及筛选它们的分析方法。

在分子水平上,脂质晶体的最小单位称为“晶胞”。晶胞的常规三维重复构建晶格,其横向比纵向具有更强的分子相互作用,这解释了脂质晶体的分层构造。烃链的重复横截面填料称为子电池1,1213图1)。薄片是脂质分子的横向堆积。在晶体封装中,不同薄片之间的界面由甲基端基组成,而极性甘油基团位于薄片14的内部部分。为了区分薄片中的每个脂肪酸链,使用了术语小叶,它表示由单个脂肪酸链组成的亚层。酰基甘油可以排列成双(2L)或三(3L)小叶链长度14。薄片的表面能驱使它们外延地相互堆叠,以提供纳米微晶。不同的加工因素,如冷却温度和速率,影响堆叠薄片的数量,从而影响微晶厚度(~10-100nm)。微晶的聚集导致微尺度上球晶的形成,球晶的聚集为LBEs的晶体网络提供了明确的宏观行为13

固态跃迁始于分子水平。从一个子单元到另一个子单元的几何过渡称为多态性。α-、β’-和β-形式的三种主要多晶型通常在酰基甘油中发现,根据增加的稳定性排序。薄片相对于端基的倾斜发生在多态性转变113期间。LBE经历了存储和熔体介导的多态性转变。当亚稳形式储存在其熔融温度以下时,就会发生储存转变,而熔融介导的转变发生在温度上升到亚稳形式的熔点以上时,从而引发更稳定形式的熔化和连续结晶。

此外,还可能发生相分离和晶体生长。相分离由初始多相结晶和一相或多相生长驱动。颗粒-颗粒相互作用,包括烧结、分子相互作用、微观结构特征和外来成分,也可以触发晶体生长15

监测LBE的固态转变及其对剂型性能的影响非常重要。其中,差示扫描量热法(DSC)和X射线衍射,特别是同步小角和广角X射线散射(SWAXS),是评估脂质固态的两个黄金标准。

DSC通常用于测量与热流相关的目标材料的焓变化,作为时间和温度的函数。该方法广泛用于筛选脂质的热行为,例如可能的熔融和结晶途径,不同多晶型的相应温度和焓,以及脂质组合物的次要和主要部分。这些数据可用于描述异质性、多相和脂质多态性5713

X射线衍射技术是测定固态结构的最有力方法。具有具有重复薄片的有序纳米结构,可以使用布拉格定律研究脂质晶体的X射线束反射:

d = λ/2sinθ (公式 1)

其中λ是1.542 Å的X射线波长,θ是散射光束的衍射角,d是重复层的平面间距,定义为脂质中的薄片长度。X射线的小角度区域可以完美地用于检测长间距图案并计算薄片长度(d)。重复距离d越大,散射角越小(1-15°,小角度区域),因为d与sin θ成反比。脂质的亚细胞排列可以表征为X射线衍射广角区域中的短间距图案。脂质的长间距和短间距模式(薄片长度和亚细胞排列)都可用于指示单向性多态性转化。例如,由于链条倾斜角度的变化,α形(六角形)可以更改为β(三斜线),薄片长度(长间距图案,在小角度区域,1-15°)和横截面堆积模式(短间距图案,在广角区域,16-25°)(图2)。

从SAXS区域获得的信息可以通过Scherrer方程15测量其厚度(D)来进一步用于研究晶体生长:

D = Kλ/FWHMcosθ(公式 2)

其中,FWHM是在背景和峰值之间的一半高度处测量的衍射最大值的弧度宽度,通常称为半峰全宽(FWHM);θ 是衍射角;λ是X射线波长(1.542 Å),K(谢勒常数)是一个无量纲数,提供有关晶体形状的信息(在没有详细形状信息的情况下,K = 0.9是一个很好的近似值)。请注意,Scherrer方程可用于估计高达约100nm的平均晶体尺寸,因为峰展宽与微晶尺寸成反比。因此,其应用可用于确定纳米片的厚度,并间接确定聚集薄片的数量。在药物制剂开发中使用这种公知的方法筛选脂质的晶体性质以及产品性能的相应不稳定性的例子可以在51216,1718中找到。

通过成熟的分析技术监测每个发育阶段LBE的固态,为设计高性能制造工艺和稳定的脂质基药品提供了有效的策略。

本出版物介绍了LBEs的综合固态分析在监测固态变化及其与药物剂型中活性药物成分(API)释放曲线变化的相关性方面的关键应用。以基于热熔包覆脂质的API晶体的多颗粒体系和通过高压均质生产的纳米脂质悬浮液为例。本出版物的重点是粉末X射线衍射和DSC作为分析工具的应用。前两个示例分别显示了多晶型转变和晶体生长对包被样品API释放变化的影响。最后一个例子揭示了脂质的稳定固态与药物产品在脂质包被的多颗粒系统和纳米脂质悬浮液中的稳定性能之间的相关性。

Protocol

1. 差示扫描量热法 仪器准备使用配备内冷器、自动进样器和软件的差示扫描量热仪进行仪器控制和数据分析。 打开氮气供应并将压力设置在 0.2–0.5 bar 之间,然后打开 DSC 仪器和自动进样器的电源。 打开软件并通过单击激活待机模式 是 按钮。允许设备平衡至少一小时 用氮气吹扫炉子,单击“新方法”图标并转到“方法定义”。激?…

Representative Results

脂质多态转变与脂质包被API晶体中API释放的相关性:涂有甘油单硬脂酸酯的API晶体在包被后直接通过DSC和X射线 进行 测量,并在加速条件(40°C,75%相对湿度)下储存3个月后7。单硬脂酸甘油酯是一种多相系统,含有40%-55%的甘油单酯、30%-45%的甘油二酯和5%-15%的甘油酯,主要是三硬脂酸19。据报道,单硬脂酸20 的亚α、α、?…

Discussion

粉末X射线衍射和DSC在本手稿中被描述为LBE固态分析的金标准。粉末X射线衍射具有原 处理测量的突出优势,在测量过程中对样品的固态操作最少。此外,相同填充的毛细管可以在初始测量后在不同条件下储存,以研究储存过程中的固态变化。在这项工作中,我们专注于X射线的广角和小角区域,使我们能够提供尺寸高达约100 nm的结构数据。

Ultra SAXS (USAXS) 可用于跟?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

药物工程研究中心(RCPE)由BMK,BMDW,Land Steiermark和SFG在COMET的框架内资助 – 卓越技术能力中心。COMET计划由FFG管理。

Materials

CaCl2·2H2O Sigma-Aldrich 223506
Cassettes with a cellulose membrane bag with a cut-off of 7000 Da, Thermo Scientific Slide-A-Lyzer 7K Fisher Scientific Inco, USA
Control software of x-ray system HECUS dedicated house equipment
Control unit of x-ray system HECUS dedicated house equipment
Differential scanning calorimeter (DSC) aluminum crucibles and lids Netzsch, Germany
Differential scanning calorimeter DSC 204 F1 Phoenix (NETZSCH, Germany). Netzsch, Germany
Dipalmitoylphosphatidylcholine (DPPC) Sigma-Aldrich 850355P
Dissolution paddle apparatus II, Erweka DT 828 LH Erweka GmbH, Langen, Germany
Dynasan 116 IOI OLEO Tripalmitin
Geleol Gattefosse Glyceryl monosterarate 
KCl  Sigma-Aldrich 529552
KH2PO4 Sigma-Aldrich P0662
Kolliphor P 188 BASF Chem Trade Poloxamer 188 
MgCl2·6H2O Sigma-Aldrich M2670
Na2HPO4·2H2O Sigma-Aldrich S9763
NaCl Sigma-Aldrich S9888
Netzsch DSC 204F1 Software Version 8.0.1 Netzsch, Germany 6.239.2-64.51.00
Origin Pro (OriginLab, Northampton, MA) (statistical software OriginLab, Northampton, MA
Proteous Analysis Software Netzsch, Germany
Tween 65 Polysorbate 65
Witepsol PMF 1683 IOI OLEO Triglycerol ester of stearatic/palmitic acid (partially esterified)
Witepsol PMF 282 IOI OLEO Diglycerol ester of stearic acid 
X-ray HECUS system composed of a point-focusing camera and two linearly positioned sensitive detectors HECUS dedicated house equipment

References

  1. Sato, K. Crystallization behaviour of fats and lipids a review. Chemical Engineering Science. 56 (7), 2255-2265 (2001).
  2. Becker, K., Salar-Behzadi, S., Zimmer, A. Solvent-free melting techniques for the preparation of lipid-based solid oral formulations. Pharmaceutical Research. 32 (5), 1519-1545 (2015).
  3. Rosiaux, Y., Jannin, V., Hughes, S., Marchaud, D. Solid lipid excipients – Matrix agents for sustained drug delivery. Journal of Controlled Release. 188, 18-30 (2014).
  4. Siepmann, J., et al. Lipids and polymers in pharmaceutical technology: lifelong companions. International Journal of Pharmaceutics. 558, 128-142 (2019).
  5. Lopes, D., et al. Microphase separation in solid lipid dosage forms as the cause of drug release instability. International Journal of Pharmaceutics. 517 (1-2), 403-412 (2017).
  6. Reitz, C., Kleinebudde, P. Solid lipid extrusion of sustained release dosage forms. European Journal of Pharmaceutics and Biopharmaceutics. 67 (2), 440-448 (2007).
  7. Salar-Behzadi, S., Corzo, C., Schaden, L., Laggner, P., Zimmer, A. Correlation between the solid state of lipid coating and release profile of API from hot melt coated microcapsules. International Journal of Pharmaceutics. 565, 569-578 (2019).
  8. Windbergs, M., Gueres, S., Strachan, C. J., Kleinebudde, P. Two-step solid lipid extrusion as a process to modify dissolution behavior. AAPS PharmSciTech. 11 (1), 2-8 (2010).
  9. Schertel, S., Salar-Behzadi, S., Zimmer, A. Impact of surface properties of core material on the stability of hot melt-coated multiparticulate systems. Pharmaceutics. 13 (3), 366 (2021).
  10. Tang, D., Marangoni, A. G. Microstructure and fractal analysis of fat crystal networks. Journal of the American Oil Chemists’ Society. 83, 377-388 (2006).
  11. Corzo, C., et al. Lipid-microparticles for pulmonary delivery of active pharmaceutical ingredients: Impact of lipid crystallization on spray-drying processability. International Journal of Pharmaceutics. 610, 121259 (2021).
  12. Acevedo, N. C., Marangoni, A. G. Characterization of the nanostructure of triacylglycerol crystal networks. Structure-Function Analysis of Edible Fats. , (2012).
  13. Marangoni, A. G. Structure-function analysis of edible fats. Structure-Function Analysis of Edible Fats. , (2018).
  14. Sato, K., Sato, K. Crystallization of lipids. Fundamentals and Applications in Food, Cosmetics, and Pharmaceuticals. , (2018).
  15. Acevedo, N. C., Marangoni, A. G. Toward nanoscale engineering of triacylglycerol crystal networks. Crystal Growth and Design. 10 (8), 3334-3339 (2010).
  16. Lopes, D. G., et al. Role of lipid blooming and crystallite size in the performance of highly soluble drug-loaded microcapsules. Journal of Pharmaceutical Sciences. 104 (12), 4257-4265 (2015).
  17. Salar-Behzadi, S., et al. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 2: Application of polyglycerol esters of fatty acids as hot melt coating excipients. European Journal of Pharmaceutics and Biopharmaceutics. 148, 107-117 (2020).
  18. Corzo, C., Meindl, C., Lochmann, D., Reyer, S., Salar-Behzadi, S. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 3: Application of polyglycerol esters of fatty acids for the next generation of solid lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. 152, 44-55 (2020).
  19. Tylor, A. K., Rowe, R. C., Sheskey, P. J., Quinn, M. E. Glyceryl monostearate. Handbook of Pharmaceutical Excipients. , 290-293 (2009).
  20. Lutton, R. S., Jackson, F. L. The polymorphism of 1- monostearin and 1-monopalmitin. Journal of the American Chemical Society. 70 (7), 2445-2449 (1948).
  21. Fang, W., Mayama, H., Tsujii, K. Spontaneous formation of fractal structures on triglyceride surfaces with reference to their super water-repellent properties. The Journal of Physical Chemistry. B. 111 (3), 564-571 (2007).
  22. Maleky, F., Marangoni, A. Nanoscale effects on oil migration through triacylglycerol polycrystalline colloidal networks. Soft Matter. 7, 6012-6024 (2011).
  23. Corzo, C., et al. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 1: Screening of solid-state and physical properties of polyglycerol esters of fatty acids as advanced pharmaceutical excipients. European Journal of Pharmaceutics and Biopharmaceutics. 148, 134-147 (2020).
  24. Gordillo-Galeano, A., Mora-Huertas, C. E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. European Journal of Pharmaceutics and Biopharmaceutics. 133, 285-308 (2018).
  25. Fan, Y., Marioli, M., Zhang, K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. Journal of Pharmaceutical and Biomedical Analysis. 192, 113642 (2021).
  26. Peyronel, F., Pink, D. A., Marangoni, A. G. Triglyceride nanocrystal aggregation into polycrystalline colloidal networks: Ultra-small angle X-ray scattering, models and computer simulation. Current Opinion in Colloid & Interface Science. 19 (5), 459-470 (2014).
  27. Acevedo, N. C., Marangoni, A. G. Functionalization of non-interesterified mixtures of fully hydrogenated fats using shear processing. Food and Bioprocess Technology. 7 (2), 575-587 (2014).
  28. Dong, Y. D., Boyd, B. J. Applications of X-ray scattering in pharmaceutical science. International Journal of Pharmaceutics. 417 (1-2), 101-111 (2011).
  29. Di Cola, E., Grillo, I., Ristori, S. Small angle X-ray and neutron scattering: Powerful tools for studying the structure of drug-loaded liposomes. Pharmaceutics. 8 (2), 10 (2016).
  30. Lopez, C., Lesieur, P., Bourgaux, C., Ollivin, M. Thermal and structural behavior of anhydrous milk fat. 3. Influence of cooling rate. Journal of Dairy Science. 88 (2), 511-526 (2005).
  31. Kalnin, D., Garnaud, G., Amenitsch, H. Ollivon. Monitoring fat crystallization in aerated food emulsions by combined DSC and time-resolved synchrotron X-ray diffraction. Food Research International. 35 (10), 927-934 (2002).
  32. Bugeat, S., et al. Unsaturated fatty acid enriched vs. control milk triacylglycerols: Solid and liquid TAG phases examined by Synchrotron radian X-ray diffraction coupled with DSC. Food Research International. 67, 91-101 (2015).
  33. Brubach, J. B., et al. Structural and thermal characterization of glyceryl behenate by X-ray diffraction coupled to differential calorimetry and infrared spectroscopy. International Journal of Pharmaceutics. 336 (2), 248-256 (2007).
  34. Chong, C. L., et al. Thermal and structural behaviour of crude palm oil: Crystallisation at very low cooling rate. European Journal of Lipid Science and Technology. 109 (4), 410-421 (2007).
  35. Askin, S., et al. A simultaneous differential scanning calorimetry-X-ray diffraction study of olanzapine crystallization from amorphous solid dispersions. Molecular Pharmaceutics. 17 (11), 4364-4374 (2020).
  36. Clout, A., et al. Simultaneous differential scanning calorimetry – synchrotron X-ray powder diffraction: A powerful technique for physical form characterization in pharmaceutical materials. Analytical Chemistry. 88 (20), 10111-10117 (2016).
  37. Jendrzejewska, I., Goryczka, T., Pietrasik, E., Klimontko, J., Jampilek, J. X-ray and thermal analysis of selected drugs containing acetaminophen. Molecules. 25 (24), 5909 (2020).
  38. Righetti, M. C. Crystallization of Polymers Investigated by Temperature-Modulated DSC. Materials. 10 (4), 442 (2017).
  39. Sauer, B. B., Kampert, W. G., Neal Blanchard, E., Threefoot, S. A., Hsiao, B. S. Temperature modulated DSC studies of melting and crystallization in polymers exhibiting multiple endotherms. Polymer. 41 (3), 1099-1108 (2000).
  40. Ali, F., Kumar, R., Lal Sahu, P., Singh, G. N. Physicochemical characterization and compatibility study of roflumilast with various pharmaceutical excipients. Journal of Thermal Analysis and Calorimetry. 130, 1627-1641 (2017).
check_url/63993?article_type=t

Play Video

Cite This Article
Salar-Behzadi, S., Corzo, C., Laggner, P. A Package of Established Analytical Tools to Investigate the Solid-State Alteration of Lipid-Based Excipients. J. Vis. Exp. (186), e63993, doi:10.3791/63993 (2022).

View Video