Summary

研究鞘氨醇1-磷酸受体结构和信号通路的管道

Published: June 08, 2022
doi:

Summary

S1P通过S1P受体(S1PRs)亚家族发挥其多样化的生理作用。这里描述了一个管道来阐述S1PR的结构和功能。

Abstract

溶血磷脂(LPL)是生物活性脂质,包括鞘氨醇1-磷酸(S1P),溶血磷脂酸等。S1P是细胞膜中鞘脂的代谢产物,是表征最好的LPL之一, 通过 鞘氨醇1-磷酸受体(S1PRs)介导的信号通路调节各种细胞生理反应。这意味着S1P-S1PR信号系统是疾病(包括多发性硬化症(MS),自身免疫性疾病,癌症,炎症甚至COVID-19)的显着潜在治疗靶点。S1PR是A类G蛋白偶联受体(GPCR)家族的一小部分,由五种亚型组成:S1PR1,S1PR2,S1PR3,S1PR4和S1PR5。然而,缺乏详细的结构信息阻碍了靶向S1PR的药物发现。在这里,我们应用冷冻电子显微镜方法求解了S1P-S1PR复合物的结构,并利用基于细胞的功能测定阐明了活化,选择性药物识别和G蛋白偶联的机制。其他溶酶磷脂受体(LPLR)和GPCR也可以使用这种策略进行研究。

Introduction

鞘氨醇-1-磷酸(S1P)是细胞膜中鞘脂的代谢产物,是一种无处不在的溶血磷脂信号分子,涉及各种生物活性,包括淋巴细胞运输,血管发育,内皮完整性和心率123。S1P通过五种S1P受体亚型(S1PRs 1-5)发挥其多样化的生理作用;S1PR存在于各种组织中,对下游G蛋白表现出独特的偏好45。S1PR1主要与Gi蛋白偶联,随后抑制cAMP的产生;S1PR2 和 S1PR3 与 Gi、Gq 和 G12/13 耦合,S1PR4 和 S1PR5 通过 Gi 和 G12/136 转换信号。

S1P-S1PR信号传导是多种疾病的关键治疗靶点,包括自身免疫性疾病7,炎症8,癌症9,甚至COVID-1910。2010年,芬戈莫德(FTY720)被批准为靶向S1PR治疗复发性多发性硬化症(MS)11的同类药物。然而,它能够与除S1PR2以外的所有S1PR结合,而与S1PR3的非特异性结合导致大脑皮层水肿,血管和支气管收缩以及肺上皮渗漏12。作为增加治疗选择性的替代策略,已经产生了受体的亚型特异性配体。西波尼莫德(BAF312)于2019年被批准用于复发性MS治疗13;它有效地靶向S1PR1和S1PR5,而它对S1PR3没有亲和力,在临床实践中表现出较少的副作用14。2020年,美国食品和药物管理局授权奥扎尼莫特用于MS治疗15。据报道,臭氧莫德对S1PR1的选择性比S1PR516高25倍。值得注意的是,在当前COVID-19大流行的背景下,已经发现靶向S1PR的激动剂药物可以通过使用免疫调节治疗技术来治疗COVID-19 17。与芬戈莫德相比,奥扎尼莫德在降低COVID-19患者的症状方面显示出优越性,目前正在进行临床试验10。了解S1PR的结构基础和功能为开发选择性靶向S1PR18的药物奠定了重要基础。

许多技术用于研究生物大分子的结构信息,包括X射线晶体学,核磁共振(NMR)和电子显微镜(EM)。截至2022年3月,蛋白质数据库(PDB)上沉积了超过180,000个结构,其中大多数已通过X射线晶体学解析。然而,随着程轶凡和David Julius在2013年19日报道了TPRV1的第一个近原子分辨率结构(3.4 Å分辨率),冷冻电子显微镜(cryo-EM)已成为蛋白质结构的主流技术,EM PDB结构的总数超过10,000个。关键的突破领域是开发新的成像相机,称为直接电子检测相机和新的图像处理算法。在过去的十年中,冷冻电镜彻底改变了结构生物学和基于结构的药物发现20.由于了解大分子复合物如何在活细胞中履行其复杂的作用是生物科学的中心主题,冷冻电镜有可能揭示动态分子复合物的构象,特别是对于跨膜蛋白21。G蛋白偶联受体(GPCRs)是跨膜蛋白的最大超家族,也是目前上市药物中30%以上的靶标22。冷冻电镜的发展促成了GPCR-G蛋白复合物的高分辨率结构的爆发,从而能够确定药物设计23中X射线晶体学分析仍然无法获得的“难处理”靶标的结构。因此,冷冻电镜应用提供了在接近原子分辨率24的情况下确定近天然条件下GPCR三维结构的机会。冷冻电镜的进步使得可视化GPCR刺激或抑制的机制基础成为可能,并进一步有利于揭示GPCR靶向药物创造的新型结合位点25

依靠冷冻电镜技术的巨大进步,我们最近确定了激动的S1PR1-,S1PR3-和S1PR5-Gi信号复合物的结构2627。在人类中,S1PR存在于各种组织中,对下游G蛋白表现出独特的偏好45。S1PR1主要与Gi蛋白偶联,随后抑制3’,5′-环磷酸腺苷(cAMP)的产生。S1PR3 和 S1PR5 也能够与 Gi628 耦合。由于Gi偶联受体激活降低了cAMP29的产生,因此引入了Gi抑制cAMP测定法来测量捕获功能改变2627的cAMP抑制作用。使用萤 火虫 荧光素酶的突变版本,其中插入了cAMP结合蛋白部分,该cAMP测定提供了一种简单可靠的方法,用于通过细胞内cAMP浓度30的变化来监测GPCR活性。它是一种灵敏的非放射性功能测定,可用于监测各种GPCR的实时下游信号传导,用于药物发现目的31.

这里总结了解决S1PR的活化和药物识别模式的关键方法,主要包括冷冻电镜操作和Gi抑制cAMP测定。本文旨在为进一步探索GPCR的结构和功能提供全面的实验指导。

Protocol

1. S1PRs-G蛋白复合物的纯化 为了纯化人S1PRs-G蛋白复合物,将缺乏C端残基338-382的S1PR1的C1PR1的cDNA、在C末端用345-398截断的野生型S1PR5和野生型Gi1克隆到pFastBac1载体中,将野生型Gβ1和Gγ2的cDNA克隆到pFastBacdual载体中(材料表)。注意:S1PR的所有构建体还包含血凝素(HA)信号序列,后跟N端的Flag表位标签和C端的10倍他的标签。此外,将用于翻译T4溶菌酶(T4L)的合成D…

Representative Results

在冷冻S1PRs-Gi复合物的样品之前,需要通过尺寸排阻色谱(SEC)分离纯化的样品,并用凝胶过滤色谱进行分析。 图2 显示了以S1PR3-Gi复合物为例。均相GPCR-G蛋白复合物的峰分数通常位于大小排阻色谱的~10.5mL(图2A)。S1PR3-Gi配合物的SDS页面分析(图2B)揭示了对应于S1PR3,Gαi,Gβ和scFv16的理论条带的四个条带,因此表明该配…

Discussion

该协议描述了通过冷冻电镜测定S1PR结构的主要管道,并通过Gi介导的cAMP抑制测定法测量S1PR的活化效力。一些步骤对实验的成功至关重要。

为了纯化S1PR-Gi复合物,病毒的质量和 sf9 细胞的健康应该更加关注。受体的表达在较差 的sf9 细胞中显着降低。通过测量 sf9 细胞的直径来评估其健康状况。健康的 sf9 细胞的直径约为15μm。S1PRs-Gi复合物的产量受?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

S1PR-Gi复合物的数据在四川大学华西冷冻电镜中心和南方科技大学低温电镜中心采集,并在四川大学杜玉高性能计算中心进行处理。本研究由中国自然科学基金(32100965至LC.C.,32100988至W.Y.,31972916至Z.S.)和四川大学专职博士后研究基金(2021SCU12003至L.C.)资助。

Materials

0.05% trypsin-EDTA GIBCO Cat# 25300054
0.22 µM filter Thermo Fisher Scientific Cat# 42213-PS
100 kDa cut-off concentrator Thermo Fisher Scientific Cat# 88533
6-well plate Corning Cat# 43016
96-well plate Corning Cat# 3917
Aprotinin Sigma-Aldrich Cat# 9087-70-1
Apyrase NEB Cat# M0398S
Baculovirus transfection reagent Thermo Fisher Scientific Cat# 10362100 For the preparation of P0 baculovirus
Benzamidine Sigma-Aldrich Cat# B6506
CHO-K1 ATCC N/A
CHS Sigma-Aldrich Cat# C6512
CryoSPARC Punjani, A., et al.,2017 https://cryosparc.com/
DH5α competent E.coli Thermo Fisher Scientific Cat# EC0112
D-Luciferin-Potassium Salt Sigma- Aldrich Cat# 50227
DMSO Sigma- Aldrich Cat# D2438
EDTA Thermo Fisher Scientific Cat# S311-500
ESF921 cell culture medium Expression Systems Cat#  96-001
Excel microsoft N/A
F12 medium Invitrogen Cat# 11765
FBS Cell Box Cat# SAG-01U-02
Flag resin Sigma- Aldrich Cat# A4596
Forskolin APExBIO Cat# B1421
Gctf Zhang, 2016  https://www.mrc-lmb.cam.ac.uk/kzhang/Gctf/
GDN Anatrace Cat# GDN101
Gel filtration column GE healthcare Cat# 28990944
Gen5 3.11 BIO-TEK N/A
Gentamicin Solarbio Cat# L1312
GloSensor cAMP assay kit Promega Cat# E1291 Gi-inhibition cAMP assay kit
GloSensor plasmid Promega Cat# E2301 Sensor plasmid
Grace’s medium GIBCO Cat# 11595030
GraphPad Prism 8 Graphpad N/A
HBSS Thermo Fisher Scientific Cat# 88284
HEPES Sigma- Aldrich Cat# H4034
jetPRIME Reagent Polyplus Transfection Cat# 114-15 transfection reagent
Janamycin Solarbio Cat# K1030
LB medium Invitrogen Cat# 12780052
Leupeptin Sigma-Aldrich Cat# L2884
LMNG Anatrace Cat# NG310
MotionCor2 (Zheng et al., 2017) https://emcore.ucsf.edu/ucsf-software
NanoCab Thermo Fisher Scientific Cat# 1121822
PBS Invitrogen Cat# 14190-144
pcDNA3.1-HA-FLAG-S1PRs GenScript N/A
pFastBac1-Gαi GenScript N/A
pFastBac1-HA-FLAG-T4L-S1PRs-His10 GenScript N/A
pFastBacdual-Gβ1γ2 GenScript N/A
PureLink HiPure Plasmid Miniprep Kit Invitrogen Cat# K210003 For the preparation of plasmids and P0 baculovirus
Q5 site-Directed Mutagenesis kit NEB Cat# E0554S For the preparation of plasmids
Quantifoil Quantifoil Cat# 251448
RELION-3.1 (Zivanov et al., 2018) https://www2.mrc-lmb.cam.ac.uk/relion
S1PRs cDNA addgene N/A
scFv16 Invitrogen Cat# 703976
Sf9 Expression Systems N/A
Siponimod Selleck Cat# S7179
sodium cholate Sigma-Aldrich Cat# C1254
Synergy H1 microplate reader BIO-TEK N/A
Synthetic T4L DNA (sequence) N/A N/A Aacatcttcgagatgctgcgcatcgacgaagg
cctgcgtctcaagatttacaagaataccgaagg
ttattacacgattggcatcggccacctcctgaca
aagagcccatcactcaacgctgccaagtctga
actggacaaagccattggtcgcaacaccaac
ggtgtcattacaaaggacgaggcggagaaac
tcttcaaccaagatgtagatgcggctgtccgtgg
catcctgcgtaatgccaagttgaagcccgtgt
atgactcccttgatgctgttcgccgtgcagcctt
gatcaacatggttttccaaatgggtgagaccgg
agtggctggttttacgaactccctgcgcatgctcc
agcagaagcgctgggacgaggccgcagtga
atttggctaaatctcgctggtacaatcagacacc
taaccgtgccaagcgtgtcatcactaccttccg
tactggaacttgggacgcttac
TCEP Thermo Fisher Scientific Cat# 77720
Tetracycline Solarbio Cat# T8180
Vitrobot Mark IV Thermo Fisher Scientific N/A

References

  1. Verstockt, B., et al. Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nature Reviews: Gastroenterology & Hepatology. , 1-16 (2022).
  2. Rosen, H., Stevens, R. C., Hanson, M., Roberts, E., Oldstone, M. B. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annual Review of Biochemistry. 82, 637-662 (2013).
  3. Cartier, A., Hla, T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science. 366 (6463), 5551 (2019).
  4. Jozefczuk, E., Guzik, T. J., Siedlinski, M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacological Research. 156, 104793 (2020).
  5. Kihara, Y., Maceyka, M., Spiegel, S., Chun, J. Lysophospholipid receptor nomenclature review: IUPHAR Review 8. British Journal of Pharmacology. 171 (15), 3575-3594 (2014).
  6. Bryan, A. M., Del Poeta, M. Sphingosine-1-phosphate receptors and innate immunity. Cellular Microbiology. 20 (5), 12836 (2018).
  7. Pelletier, D., Hafler, D. A. Fingolimod for multiple sclerosis. New England Journal of Medicine. 366 (4), 339-347 (2012).
  8. Obinata, H., Hla, T. Sphingosine 1-phosphate and inflammation. International Immunology. 31 (9), 617-625 (2019).
  9. Pyne, N. J., Pyne, S. Sphingosine 1-phosphate and cancer. Nature Reviews: Cancer. 10 (7), 489-503 (2010).
  10. Abu-Farha, M., et al. The role of lipid metabolism in COVID-19 virus infection and as a drug target. International Journal of Molecular Sciences. 21 (10), 3544 (2020).
  11. Chun, J., Kihara, Y., Jonnalagadda, D., Blaho, V. A. Fingolimod: lessons learned and new opportunities for treating Multiple Sclerosis and other disorders. Annual Review of Pharmacology and Toxicology. 59, 149-170 (2019).
  12. Murakami, A., et al. Sphingosine 1-phosphate (S1P) regulates vascular contraction via S1P3 receptor: investigation based on a new S1P3 receptor antagonist. Molecular Pharmacology. 77 (4), 704-713 (2010).
  13. Cao, L., et al. Siponimod for multiple sclerosis. Cochrane Database of Systematic Reviews. 11, (2021).
  14. Scott, L. J. Siponimod: a review in secondary progressive Multiple Sclerosis. CNS Drugs. 34 (11), 1191-1200 (2020).
  15. Lamb, Y. N. Ozanimod: first approval. Drugs. 80 (8), 841-848 (2020).
  16. Scott, F. L., et al. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1) and receptor-5 (S1P5) agonist with autoimmune disease-modifying activity. British Journal of Pharmacology. 173 (11), 1778-1792 (2016).
  17. McGowan, E. M., Haddadi, N., Nassif, N. T., Lin, Y. Targeting the SphK-S1P-SIPR pathway as a potential therapeutic approach for COVID-19. International Journal of Molecular Sciences. 21 (19), 7189 (2020).
  18. O’Sullivan, C., Dev, K. K. The structure and function of the S1P1 receptor. Trends in Pharmacological Sciences. 34 (7), 401-412 (2013).
  19. Liao, M., Cao, E., Julius, D., Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature. 504 (7478), 107-112 (2013).
  20. Bai, X. C., McMullan, G., Scheres, S. H. How cryo-EM is revolutionizing structural biology. Trends in Biochemical Sciences. 40 (1), 49-57 (2015).
  21. Murata, K., Wolf, M. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochimica et Biophysica Acta General Subjects. 1862 (2), 324-334 (2018).
  22. Zhang, M., et al. Cryo-EM structure of an activated GPCR-G protein complex in lipid nanodiscs. Nature Structural & Molecular Biology. 28 (3), 258-267 (2021).
  23. Renaud, J. P., et al. Cryo-EM in drug discovery: achievements, limitations and prospects. Nature Reviews: Drug Discovery. 17 (7), 471-492 (2018).
  24. Ishchenko, A., Gati, C., Cherezov, V. Structural biology of G protein-coupled receptors: new opportunities from XFELs and cryoEM. Current Opinion in Structural Biology. 51, 44-52 (2018).
  25. Yang, D., et al. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduction and Targeted Therapy. 6 (1), 7 (2021).
  26. Yuan, Y., et al. Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition. Cell Research. 31 (12), 1263-1274 (2021).
  27. Zhao, C., et al. Structural insights into sphingosine-1-phosphate recognition and ligand selectivity of S1PR3-Gi signaling complexes. Cell Research. 32 (2), 218-221 (2022).
  28. Xu, Z., et al. Structural basis of sphingosine-1-phosphate receptor 1 activation and biased agonism. Nature Chemical Biology. 18, 281-288 (2022).
  29. Liu, Y. F., Ghahremani, M. H., Rasenick, M. M., Jakobs, K. H., Albert, P. R. Stimulation of cAMP synthesis by Gi-coupled receptors upon ablation of distinct Galphai protein expression. Gi subtype specificity of the 5-HT1A receptor. Journal of Biological Chemistry. 274 (23), 16444-16450 (1999).
  30. Buccioni, M., et al. Innovative functional cAMP assay for studying G protein-coupled receptors: application to the pharmacological characterization of GPR17. Purinergic Signalling. 7 (4), 463-468 (2011).
  31. Wang, F. I., Ding, G., Ng, G. S., Dixon, S. J., Chidiac, P. Luciferase-based GloSensor cAMP assay: Temperature optimization and application to cell-based kinetic studies. Methods. , (2021).
  32. Audet, M., et al. Small-scale approach for precrystallization screening in GPCR X-ray crystallography. Nature Protocols. 15 (1), 144-160 (2020).
  33. Sgro, G. G., Costa, T. R. D. Cryo-EM grid preparation of membrane protein samples for single particle analysis. Frontiers in Molecular Biosciences. 5, 74 (2018).
  34. White, J. B. R., et al. Single particle cryo-electron microscopy: from sample to structure. Journal of Visualized Experiments. (171), e62415 (2021).
  35. Thompson, R. F., Iadanza, M. G., Hesketh, E. L., Rawson, S., Ranson, N. A. Collection, pre-processing and on-the-fly analysis of data for high-resolution, single-particle cryo-electron microscopy. Nature Protocols. 14 (1), 100-118 (2019).
  36. Fernandez-Leiro, R., Scheres, S. H. W. A pipeline approach to single-particle processing in RELION. Acta Crystallographica Section D. 73 (6), 496-502 (2017).
  37. Punjani, A., Rubinstein, J. L., Fleet, D. J., Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nature Methods. 14 (3), 290-296 (2017).
  38. Brilot, A. F., et al. Beam-induced motion of vitrified specimen on holey carbon film. Journal of Structural Biology. 177 (3), 630-637 (2012).
  39. Zheng, S. Q., et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nature Methods. 14 (4), 331-332 (2017).
  40. Zhang, K. Gctf: Real-time CTF determination and correction. Journal of Structural Biology. 193 (1), 1-12 (2016).
  41. Scheres, S. H. Semi-automated selection of cryo-EM particles in RELION-1.3. Journal of Structural Biology. 189 (2), 114-122 (2015).
  42. Liu, S., et al. Differential activation mechanisms of lipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate. Nature Communications. 13 (1), 731 (2022).
  43. Duan, J., et al. Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy. Nature Communications. 11 (1), 4121 (2020).
  44. DiIorio, M. C., Kulczyk, A. W. A robust single-particle cryo-electron microscopy (cryo-EM) processing workflow with cryoSPARC, RELION, and Scipion. Journal of Visualized Experiments. (179), e63387 (2022).
  45. Pradelles, P., Grassi, J., Chabardes, D., Guiso, N. Enzyme immunoassays of adenosine cyclic 3′,5′-monophosphate and guanosine cyclic 3′,5′-monophosphate using acetylcholinesterase. Analytical Chemistry. 61 (5), 447-453 (1989).
  46. Jiang, L. I., et al. Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. Journal of Biological Chemistry. 282 (14), 10576-10584 (2007).
check_url/64054?article_type=t

Play Video

Cite This Article
Cheng, L., Su, L., Tian, X., Xia, F., Zhao, C., Yan, W., Shao, Z. A Pipeline to Investigate the Structures and Signaling Pathways of Sphingosine 1-Phosphate Receptors. J. Vis. Exp. (184), e64054, doi:10.3791/64054 (2022).

View Video