Summary

通过超偏振氙光谱法获得的肺结构和功能的定量测量

Published: November 10, 2023
doi:

Summary

该手稿提出了使用超极化 Xenon-129 化学位移饱和恢复 (CSSR) 追踪肺气体交换、评估表观肺泡隔壁厚度并测量表面体积比的详细方案。该方法具有诊断和监测肺部疾病的潜力。

Abstract

超极化氙 129 (HXe) 磁共振成像 (MRI) 提供了用于获取肺通气模式、气体扩散、肺实质对氙的摄取以及其他肺功能指标的 2 维或 3 维图的工具。然而,通过交换空间分辨率,它还可以在毫秒时间尺度上追踪肺氙气体交换。本文介绍了一种这样的技术,即化学位移饱和恢复 (CSSR) MR 光谱。它说明了如何使用它来评估毛细血管血容量、鼻中隔壁厚度和肺泡中的表面与体积比。施加的射频脉冲 (RF) 的翻转角度经过仔细校准。采用单剂量屏气和多剂量自由呼吸方案向受试者施用气体。一旦吸入的氙气到达肺泡,就应用一系列 90° 射频脉冲,以确保肺实质中积累的氙磁化物的最大饱和度。在可变的延迟时间之后,采集光谱以量化由于肺泡气体体积和肺组织室之间的气体交换而导致的氙信号的再生。然后,通过将复杂的赝Voigt函数拟合到三个主峰来分析这些光谱。最后,将延迟时间依赖的峰值振幅拟合到一维分析气体交换模型中,以提取生理参数。

Introduction

超极化氙 129 (HXe) 磁共振成像 (MRI)1 是一种为肺结构、功能和气体交换过程提供独特见解的技术。通过自旋交换光泵浦显着放大氙气的磁化强度,与热偏振氙气MRI 相比,HXe MRI 在信噪比方面实现了数量级的提高 2,3,4,5,6。这种超极化使得氙气吸收进入肺组织和血液的直接可视化和量化成为可能,否则传统的热偏振 MRI7 无法检测到。

化学位移饱和恢复 (CSSR) MR 光谱 8,9,10,11,12,13 已被证明是最有价值的 HXe MRI 技术之一。CSSR 涉及使用特定频率射频 (RF) 脉冲选择性地饱和溶解在肺组织和血液中的氙的磁化强度。溶解相 (DP) 信号在以毫秒的时间尺度与气域中的新鲜超极化氙气交换时的后续恢复提供了有关肺实质的重要功能信息。

自 2000 年代初发展以来,CSSR 光谱背后的技术已逐步完善 14,15,16,17,18,19,20,21,22,23。此外,氙气摄取曲线建模的进展使得提取特定的生理参数成为可能,例如肺泡壁厚度和肺转运时间10,24,25,26。研究表明,CSSR 对肺部微结构和气体交换效率的细微变化敏感,表现为临床健康的吸烟者27 以及一系列肺部疾病,包括慢性阻塞性肺病 (COPD)18,27,28、纤维化29 和辐射诱发的肺损伤 30,31.CSSR 光谱法也被证明对检测与心动周期期间的脉动血流相对应的 DP 信号中的振荡很敏感32

虽然已经取得了重大进展,但在临床 MRI 系统上实施 CSSR 光谱学仍然存在实际挑战。对于儿科受试者 33,34 或患有严重肺病的患者 35,36 来说,需要单剂量屏气接近 10 秒的扫描时间可能太长此外,如果采集参数(如饱和延迟时间的阶数或溶解相饱和的功效)没有得到适当的优化,则该技术容易受到测量偏差的影响21。为了解决这些局限性并使更广泛的研究界更容易获得 CSSR,需要针对传统屏气和自由呼吸采集的清晰、循序渐进的协议,目前正在开发中。

本文旨在提出一种使用HXe气体进行优化的CSSR MR光谱的详细方法。该协议将涵盖氙气的极化和输送、射频脉冲校准、序列参数选择、受试者准备、数据采集以及数据分析的关键步骤。将提供实验结果的示例。希望这份全面的指南将作为跨研究中心实施 CSSR 的基础,并帮助实现该技术在量化一系列肺部疾病中肺部微结构变化方面的全部潜力。

Protocol

注意:虽然此处描述的超极化Xenon-129 CSSR MR光谱技术通常用于动物和人类成像,但以下协议仅涉及人体研究。所有成像方案均符合 FDA 特定吸收率 (SAR) 限制 (4 W/kg),并得到宾夕法尼亚大学机构审查委员会的批准。获得了每个受试者的知情同意。 1. 脉冲时序设计 决定是进行屏气测量还是自由呼吸测量。注意:屏气采集在技术上更简单,因为它们只?…

Representative Results

图 2 显示了在吸入 500 mL 氙气剂量后,在屏气期间在人肺中观察到的典型氙光谱。该光谱显示两个不同的区域,即 0 ppm 左右的 GP 共振和 DP 区域,后者由大约 197 ppm 的膜峰和大约 217 ppm 的红细胞峰组成。相对峰值幅度取决于许多因素,包括射频激励脉冲的形状、持续时间和中心频率,以及饱和和激励之间的延迟时间。通常,延迟时间越长,DP峰值相对于GP峰值的幅度就越大。?…

Discussion

HXe CSSR MR 光谱是一种强大的技术,用于评估使用任何其他现有诊断方式在 体内 难以或不可能量化的几种肺功能指标24。然而,采集和随后的数据分析是基于对生理条件和技术参数的某些假设,这些假设在活着的受试者中永远无法完全实现。下文将讨论这些限制及其对提取指标解释的影响。

CSSR 技术通常作为不带空间编码的全局测量实现,如上述协议?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院 R01HL159898 和 R01HL142258 的资助。

Materials

Bi-directional Pneumotach  B&B Medical AccutachTM
Chest Vest Coil Clinical MR Solutions Adult Size
Face Mask Hans Rudolph 7450
Matlab Mathworks Release 2018a Optimization Toolbox required
Physiological Monitoring System  BIOPAC Systems Inc
Tedlar Bag Jensen Inert Products 250-mL and 500-mL; specialised PVF bag
Xenon Polarizer Xemed LLC X-box E10 
Whole-body MRI Scanner Siemens 1.5 T Avanto

References

  1. Albert, M. S., et al. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature. 370 (6486), 199-201 (1994).
  2. Happer, W. Optical Pumping. Rev Mod Phys. 44 (2), 169-250 (1972).
  3. Appelt, S., et al. Theory of spin-exchange optical pumping of He-3 and Xe-129. Phys Rev A. 58 (2), 1412-1439 (1998).
  4. Hersman, F. W., et al. Large production system for hyperpolarized 129Xe for human lung imaging studies. Acad Radiol. 15 (6), 683-692 (2008).
  5. Parnell, S. R., Deppe, M. H., Parra-Robles, J., Wild, J. M. Enhancement of Xe-129 polarization by off-resonant spin exchange optical pumping. J Appl Phys. 108 (6), 064908 (2010).
  6. Norquay, G., Collier, G. J., Rao, M., Stewart, N. J., Wild, J. M. ^{129}Xe-Rb spin-exchange optical pumping with high photon efficiency. Phys Rev Lett. 121 (15), 153201 (2018).
  7. Mugler, J. P., et al. MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results. Magn Reson Med. 37 (6), 809-815 (1997).
  8. Ruppert, K., Brookeman, J. R., Hagspiel, K. D., Driehuys, B., Mugler, J. P. NMR of hyperpolarized (129)Xe in the canine chest: spectral dynamics during a breath-hold. NMR Biomed. 13 (4), 220-228 (2000).
  9. Butler, J. P., et al. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized Xenon interphase exchange nuclear magnetic resonance. J Phys Condens Matter. 14 (13), L297-L304 (2002).
  10. Mansson, S., Wolber, J., Driehuys, B., Wollmer, P., Golman, K. Characterization of diffusing capacity and perfusion of the rat lung in a lipopolysaccaride disease model using hyperpolarized 129Xe. Magn Reson Med. 50 (6), 1170-1179 (2003).
  11. Abdeen, N., et al. Measurement of Xenon diffusing capacity in the rat lung by hyperpolarized (129)Xe MRI and dynamic spectroscopy in a single breath-hold. Magn Reson Med. 56 (2), 255-264 (2006).
  12. Driehuys, B., et al. Imaging alveolar-capillary gas transfer using hyperpolarized 129Xe MRI. Proc Natl Acad Sci U S A. 103 (48), 18278-18283 (2006).
  13. Patz, S., et al. Human pulmonary imaging and spectroscopy with hyperpolarized 129Xe at 0.2T. Acad Radiol. 15 (6), 713-727 (2008).
  14. Qing, K., et al. Assessment of lung function in asthma and COPD using hyperpolarized 129Xe chemical shift saturation recovery spectroscopy and dissolved-phase MRI. NMR Biomed. 27 (12), 1490-1501 (2014).
  15. Stewart, N. J., et al. Reproducibility of quantitative indices of lung function and microstructure from 129 Xe chemical shift saturation recovery (CSSR) MR spectroscopy. Magn Reson Med. 77 (6), 2107-2113 (2017).
  16. Zhong, J., et al. Simultaneous assessment of both lung morphometry and gas exchange function within a single breath-hold by hyperpolarized (129) Xe MRI. NMR Biomed. 30 (8), (2017).
  17. Kern, A. L., et al. Regional investigation of lung function and microstructure parameters by localized (129) Xe chemical shift saturation recovery and dissolved-phase imaging: A reproducibility study. Magn Reson Med. 81 (1), 13-24 (2018).
  18. Kern, A. L., et al. Mapping of regional lung microstructural parameters using hyperpolarized (129) Xe dissolved-phase MRI in healthy volunteers and patients with chronic obstructive pulmonary disease. Magn Reson Med. 81 (4), 2360-2373 (2018).
  19. Xie, J., et al. Single breath-hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized (129) Xe MR. NMR Biomed. 32 (5), e4068 (2019).
  20. Zanette, B., Santyr, G. Accelerated interleaved spiral-IDEAL imaging of hyperpolarized (129) Xe for parametric gas exchange mapping in humans. Magn Reson Med. 82 (3), 1113-1119 (2019).
  21. Ruppert, K., et al. Investigating biases in the measurement of apparent alveolar septal wall thickness with hyperpolarized 129Xe MRI. Magn Reson Med. 84 (6), 3027-3039 (2020).
  22. Zhang, M., et al. Quantitative evaluation of lung injury caused by PM(2.5) using hyperpolarized gas magnetic resonance. Magn Reson Med. 84 (2), 569-578 (2020).
  23. Friedlander, Y., et al. Hyperpolarized (129) Xe MRI of the rat brain with chemical shift saturation recovery and spiral-IDEAL readout. Magn Reson Med. 87 (4), 1971-1979 (2022).
  24. Patz, S., et al. Diffusion of hyperpolarized (129)Xe in the lung: a simplified model of (129)Xe septal uptake and experimental results. New J Phys. 13, 015009 (2011).
  25. Chang, Y. V. MOXE: a model of gas exchange for hyperpolarized 129Xe magnetic resonance of the lung. Magn Reson Med. 69 (3), 884-890 (2013).
  26. Stewart, N. J., Parra-Robles, J., Wild, J. M. Finite element modeling of (129)Xe diffusive gas exchange NMR in the human alveoli. J Magn Reson. 271, 21-33 (2016).
  27. Ruppert, K., Qing, K., Patrie, J. T., Altes, T. A., Mugler, J. P. Using hyperpolarized Xenon-129 MRI to quantify early-stage lung disease in smokers. Acad Radiol. 26 (3), 355-366 (2019).
  28. Kern, A. L., et al. Investigating short-time diffusion of hyperpolarized (129) Xe in lung air spaces and tissue: A feasibility study in chronic obstructive pulmonary disease patients. Magn Reson Med. 84 (4), 2133-2146 (2020).
  29. Stewart, N. J., et al. Experimental validation of the hyperpolarized (129) Xe chemical shift saturation recovery technique in healthy volunteers and subjects with interstitial lung disease. Magn Reson Med. 74 (1), 196-207 (2015).
  30. Fox, M. S., et al. Detection of radiation induced lung injury in rats using dynamic hyperpolarized (129)Xe magnetic resonance spectroscopy. Med Phys. 41 (7), 072302 (2014).
  31. Li, H., et al. Quantitative evaluation of radiation-induced lung injury with hyperpolarized Xenon magnetic resonance. Magn Reson Med. 76 (2), 408-416 (2016).
  32. Ruppert, K., et al. Detecting pulmonary capillary blood pulsations using hyperpolarized Xenon-129 chemical shift saturation recovery (CSSR) MR spectroscopy. Magn Reson Med. 75 (4), 1771-1780 (2016).
  33. Walkup, L. L., et al. Feasibility, tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol. 46 (12), 1651-1662 (2016).
  34. Willmering, M. M., et al. Pediatric (129) Xe gas-transfer MRI-feasibility and applicability. J Magn Reson Imaging. 56 (4), 1207-1219 (2022).
  35. Amzajerdian, F., et al. Simultaneous quantification of hyperpolarized Xenon-129 ventilation and gas exchange with multi-breath Xenon-polarization transfer contrast (XTC) MRI. Magn Reson Med. 90 (6), 2334-2347 (2023).
  36. Niedbalski, P. J., et al. Utilizing flip angle/TR equivalence to reduce breath hold duration in hyperpolarized (129) Xe 1-point Dixon gas exchange imaging. Magn Reson Med. 87 (3), 1490-1499 (2022).
  37. Chang, Y. V. Toward a quantitative understanding of gas exchange in the lung. arXiv. , (2010).
  38. Chang, Y. V., et al. Quantification of human lung structure and physiology using hyperpolarized 129Xe. Magn Reson Med. 71 (1), 339-344 (2014).
  39. Collier, G. J., et al. Observation of cardiogenic flow oscillations in healthy subjects with hyperpolarized 3He MRI. J Appl Physiol. 119 (9), 1007-1014 (2015).
  40. Niedbalski, P. J., et al. Protocols for multi-site trials using hyperpolarized (129) Xe MRI for imaging of ventilation, alveolar-airspace size, and gas exchange: A position paper from the (129) Xe MRI clinical trials consortium. Magn Reson Med. 86 (6), 2966-2986 (2021).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Ruppert, K., Loza, L., Amzajerdian, F., Hamedani, H., Baron, R., Kadlecek, S., Rizi, R. Quantitative Measure of Lung Structure and Function Obtained from Hyperpolarized Xenon Spectroscopy. J. Vis. Exp. (201), e66038, doi:10.3791/66038 (2023).

View Video