Summary

Количественное измерение структуры и функции легких, полученное с помощью гиперполяризованной ксеноновой спектроскопии

Published: November 10, 2023
doi:

Summary

В рукописи представлен подробный протокол использования гиперполяризованного восстановления насыщения химическим сдвигом ксенона-129 (CSSR) для отслеживания легочного газообмена, оценки видимой толщины стенки альвеолярной перегородки и измерения отношения поверхности к объему. Метод имеет потенциал для диагностики и мониторинга заболеваний легких.

Abstract

Магнитно-резонансная томография (МРТ) с использованием гиперполяризованного ксенона-129 (HXe) предоставляет инструменты для получения двух- или трехмерных карт картин вентиляции легких, диффузии газов, поглощения ксенона паренхимой легких и других показателей функции легких. Однако, меняя пространственное разрешение на временное, он также позволяет отслеживать обмен легочного ксенона в масштабе мс. В этой статье описывается один из таких методов, МР-спектроскопия с восстановлением насыщения с химическим сдвигом (CSSR). Он иллюстрирует, как его можно использовать для оценки объема капиллярной крови, толщины стенки перегородки и соотношения поверхности к объему в альвеолах. Угол поворота подаваемых радиочастотных импульсов (РЧ) был тщательно откалиброван. Для введения газа субъекту применялись протоколы однократной задержки дыхания и многодозового свободного дыхания. После того, как вдыхаемый газ ксенон достигал альвеол, на него подавалась серия радиочастотных импульсов под углом 90° для обеспечения максимального насыщения накопленной намагниченности ксенона в паренхиме легких. После переменного времени задержки были получены спектры для количественной оценки повторного роста ксенонового сигнала из-за газообмена между объемом альвеолярного газа и тканевыми компартментами легкого. Затем эти спектры были проанализированы путем подгонки сложных псевдо-функций Фойгта к трем доминирующим пикам. Наконец, зависящие от времени пиковые амплитуды задержки были подобраны к одномерной аналитической модели газообмена для извлечения физиологических параметров.

Introduction

Магнитно-резонансная томография (МРТ) с использованием гиперполяризованного ксенона-129 (HXe)1 — это метод, который позволяет получить уникальное представление о структуре, функции и процессах газообмена легких. За счет резкого усиления намагниченности газа ксенона за счет спинообменной оптической накачки, HXe MRI достигает улучшения соотношения сигнал/шум на порядок по сравнению с термически поляризованной ксеноновой МРТ 2,3,4,5,6. Эта гиперполяризация позволяет напрямую визуализировать и количественно оценить поглощение газа ксенона легочной тканью и кровью, что в противном случае было бы невозможно обнаружить с помощью обычной термополяризованной МРТ7.

МР-спектроскопия 8,9,10,11,12,13 с восстановлением насыщения химическим сдвигом (CSSR) оказалась одним из наиболее ценных методов МРТ HXe. CSSR предполагает селективное насыщение намагниченности ксенона, растворенного в легочной ткани и крови, с помощью частотно-специфических радиочастотных (РЧ) импульсов. Последующее восстановление сигнала растворенной фазы (DP) при его обмене со свежим гиперполяризованным газом ксеноном в воздушном пространстве в масштабе мс дает важную функциональную информацию о паренхиме легких.

С момента своего развития в начале 2000-х годов методы, лежащие в основе спектроскопии CSSR, постепенно совершенствовались 14,15,16,17,18,19,20,21,22,23. Кроме того, достижения в моделировании кривых поглощения ксенона позволили извлечь определенные физиологические параметры, такие как толщина альвеолярной стенки и время легочного транзита 10,24,25,26. Исследования показали чувствительность CSSR к незначительным изменениям микроструктуры легких и эффективности газообмена в виде легочных аномалий, обнаруженных у клинически здоровых курильщиков27, а также при ряде заболеваний легких, включая хроническую обструктивную болезнь легких (ХОБЛ)18,27,28, фиброз29 и радиационно-индуцированное повреждение легких30,31. Также было продемонстрировано, что спектроскопия CSSR чувствительна к обнаружению колебаний сигнала DP, соответствующих пульсирующему кровотоку во время сердечного цикла32.

Несмотря на значительный прогресс, остаются практические проблемы при внедрении спектроскопии CSSR в клинические системы МРТ. Время сканирования, требующее задержки дыхания за одну дозу, приближающееся к 10 с, может быть слишком долгим для пациентов с тяжелыми заболеваниями легких33,34 или пациентов с тяжелым заболеванием легких35,36. Кроме того, метод подвержен систематическим ошибкам измерения, если такие параметры регистрации, как порядок времен задержки насыщения или эффективность насыщения растворенной фазой, не оптимизированы должнымобразом21. Чтобы устранить эти ограничения и сделать CSSR более доступным для более широкого исследовательского сообщества, необходимы четкие, пошаговые протоколы как для обычной задержки дыхания, так и для получения данных о свободном дыхании, которые в настоящее время находятся в стадии разработки.

Целью данной работы является представление подробной методологии проведения оптимизированной МР-спектроскопии CSSR с использованием газа HXe. Протокол будет охватывать поляризацию и подачу газа ксенона, калибровку радиочастотных импульсов, выбор параметров последовательности, подготовку объекта, сбор данных и ключевые этапы анализа данных. Будут приведены примеры экспериментальных результатов. Есть надежда, что это всеобъемлющее руководство послужит основой для внедрения CSSR на всех площадках и поможет реализовать весь потенциал этого метода для количественной оценки микроструктурных изменений легких при ряде легочных заболеваний.

Protocol

ПРИМЕЧАНИЕ: В то время как описанный здесь метод гиперполяризованной МР-спектроскопии Xenon-129 CSSR обычно используется для визуализации животных и человека, приведенный ниже протокол относится только к исследованиям на людях. Все протоколы визуализации соответствовали ограничениям FDA по…

Representative Results

На рисунке 2 показан типичный спектр ксенона, наблюдаемый в легких человека во время задержки дыхания после вдыхания 500 мл ксенона. Спектр отображает две отдельные области: резонанс GP около 0 ppm и область DP, которая состоит из пика мембраны примерно 197 ppm и пика эритроцитов …

Discussion

МР-спектроскопия HXe CSSR является мощным методом оценки нескольких показателей функции легких, которые было бы трудно или невозможно количественно оценить in vivo с использованием любого другого существующего диагностического метода24. Тем не менее, получение и последующ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Эта работа была поддержана грантами NIH R01HL159898 и R01HL142258.

Materials

Bi-directional Pneumotach  B&B Medical AccutachTM
Chest Vest Coil Clinical MR Solutions Adult Size
Face Mask Hans Rudolph 7450
Matlab Mathworks Release 2018a Optimization Toolbox required
Physiological Monitoring System  BIOPAC Systems Inc
Tedlar Bag Jensen Inert Products 250-mL and 500-mL; specialised PVF bag
Xenon Polarizer Xemed LLC X-box E10 
Whole-body MRI Scanner Siemens 1.5 T Avanto

References

  1. Albert, M. S., et al. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature. 370 (6486), 199-201 (1994).
  2. Happer, W. Optical Pumping. Rev Mod Phys. 44 (2), 169-250 (1972).
  3. Appelt, S., et al. Theory of spin-exchange optical pumping of He-3 and Xe-129. Phys Rev A. 58 (2), 1412-1439 (1998).
  4. Hersman, F. W., et al. Large production system for hyperpolarized 129Xe for human lung imaging studies. Acad Radiol. 15 (6), 683-692 (2008).
  5. Parnell, S. R., Deppe, M. H., Parra-Robles, J., Wild, J. M. Enhancement of Xe-129 polarization by off-resonant spin exchange optical pumping. J Appl Phys. 108 (6), 064908 (2010).
  6. Norquay, G., Collier, G. J., Rao, M., Stewart, N. J., Wild, J. M. ^{129}Xe-Rb spin-exchange optical pumping with high photon efficiency. Phys Rev Lett. 121 (15), 153201 (2018).
  7. Mugler, J. P., et al. MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results. Magn Reson Med. 37 (6), 809-815 (1997).
  8. Ruppert, K., Brookeman, J. R., Hagspiel, K. D., Driehuys, B., Mugler, J. P. NMR of hyperpolarized (129)Xe in the canine chest: spectral dynamics during a breath-hold. NMR Biomed. 13 (4), 220-228 (2000).
  9. Butler, J. P., et al. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized Xenon interphase exchange nuclear magnetic resonance. J Phys Condens Matter. 14 (13), L297-L304 (2002).
  10. Mansson, S., Wolber, J., Driehuys, B., Wollmer, P., Golman, K. Characterization of diffusing capacity and perfusion of the rat lung in a lipopolysaccaride disease model using hyperpolarized 129Xe. Magn Reson Med. 50 (6), 1170-1179 (2003).
  11. Abdeen, N., et al. Measurement of Xenon diffusing capacity in the rat lung by hyperpolarized (129)Xe MRI and dynamic spectroscopy in a single breath-hold. Magn Reson Med. 56 (2), 255-264 (2006).
  12. Driehuys, B., et al. Imaging alveolar-capillary gas transfer using hyperpolarized 129Xe MRI. Proc Natl Acad Sci U S A. 103 (48), 18278-18283 (2006).
  13. Patz, S., et al. Human pulmonary imaging and spectroscopy with hyperpolarized 129Xe at 0.2T. Acad Radiol. 15 (6), 713-727 (2008).
  14. Qing, K., et al. Assessment of lung function in asthma and COPD using hyperpolarized 129Xe chemical shift saturation recovery spectroscopy and dissolved-phase MRI. NMR Biomed. 27 (12), 1490-1501 (2014).
  15. Stewart, N. J., et al. Reproducibility of quantitative indices of lung function and microstructure from 129 Xe chemical shift saturation recovery (CSSR) MR spectroscopy. Magn Reson Med. 77 (6), 2107-2113 (2017).
  16. Zhong, J., et al. Simultaneous assessment of both lung morphometry and gas exchange function within a single breath-hold by hyperpolarized (129) Xe MRI. NMR Biomed. 30 (8), (2017).
  17. Kern, A. L., et al. Regional investigation of lung function and microstructure parameters by localized (129) Xe chemical shift saturation recovery and dissolved-phase imaging: A reproducibility study. Magn Reson Med. 81 (1), 13-24 (2018).
  18. Kern, A. L., et al. Mapping of regional lung microstructural parameters using hyperpolarized (129) Xe dissolved-phase MRI in healthy volunteers and patients with chronic obstructive pulmonary disease. Magn Reson Med. 81 (4), 2360-2373 (2018).
  19. Xie, J., et al. Single breath-hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized (129) Xe MR. NMR Biomed. 32 (5), e4068 (2019).
  20. Zanette, B., Santyr, G. Accelerated interleaved spiral-IDEAL imaging of hyperpolarized (129) Xe for parametric gas exchange mapping in humans. Magn Reson Med. 82 (3), 1113-1119 (2019).
  21. Ruppert, K., et al. Investigating biases in the measurement of apparent alveolar septal wall thickness with hyperpolarized 129Xe MRI. Magn Reson Med. 84 (6), 3027-3039 (2020).
  22. Zhang, M., et al. Quantitative evaluation of lung injury caused by PM(2.5) using hyperpolarized gas magnetic resonance. Magn Reson Med. 84 (2), 569-578 (2020).
  23. Friedlander, Y., et al. Hyperpolarized (129) Xe MRI of the rat brain with chemical shift saturation recovery and spiral-IDEAL readout. Magn Reson Med. 87 (4), 1971-1979 (2022).
  24. Patz, S., et al. Diffusion of hyperpolarized (129)Xe in the lung: a simplified model of (129)Xe septal uptake and experimental results. New J Phys. 13, 015009 (2011).
  25. Chang, Y. V. MOXE: a model of gas exchange for hyperpolarized 129Xe magnetic resonance of the lung. Magn Reson Med. 69 (3), 884-890 (2013).
  26. Stewart, N. J., Parra-Robles, J., Wild, J. M. Finite element modeling of (129)Xe diffusive gas exchange NMR in the human alveoli. J Magn Reson. 271, 21-33 (2016).
  27. Ruppert, K., Qing, K., Patrie, J. T., Altes, T. A., Mugler, J. P. Using hyperpolarized Xenon-129 MRI to quantify early-stage lung disease in smokers. Acad Radiol. 26 (3), 355-366 (2019).
  28. Kern, A. L., et al. Investigating short-time diffusion of hyperpolarized (129) Xe in lung air spaces and tissue: A feasibility study in chronic obstructive pulmonary disease patients. Magn Reson Med. 84 (4), 2133-2146 (2020).
  29. Stewart, N. J., et al. Experimental validation of the hyperpolarized (129) Xe chemical shift saturation recovery technique in healthy volunteers and subjects with interstitial lung disease. Magn Reson Med. 74 (1), 196-207 (2015).
  30. Fox, M. S., et al. Detection of radiation induced lung injury in rats using dynamic hyperpolarized (129)Xe magnetic resonance spectroscopy. Med Phys. 41 (7), 072302 (2014).
  31. Li, H., et al. Quantitative evaluation of radiation-induced lung injury with hyperpolarized Xenon magnetic resonance. Magn Reson Med. 76 (2), 408-416 (2016).
  32. Ruppert, K., et al. Detecting pulmonary capillary blood pulsations using hyperpolarized Xenon-129 chemical shift saturation recovery (CSSR) MR spectroscopy. Magn Reson Med. 75 (4), 1771-1780 (2016).
  33. Walkup, L. L., et al. Feasibility, tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol. 46 (12), 1651-1662 (2016).
  34. Willmering, M. M., et al. Pediatric (129) Xe gas-transfer MRI-feasibility and applicability. J Magn Reson Imaging. 56 (4), 1207-1219 (2022).
  35. Amzajerdian, F., et al. Simultaneous quantification of hyperpolarized Xenon-129 ventilation and gas exchange with multi-breath Xenon-polarization transfer contrast (XTC) MRI. Magn Reson Med. 90 (6), 2334-2347 (2023).
  36. Niedbalski, P. J., et al. Utilizing flip angle/TR equivalence to reduce breath hold duration in hyperpolarized (129) Xe 1-point Dixon gas exchange imaging. Magn Reson Med. 87 (3), 1490-1499 (2022).
  37. Chang, Y. V. Toward a quantitative understanding of gas exchange in the lung. arXiv. , (2010).
  38. Chang, Y. V., et al. Quantification of human lung structure and physiology using hyperpolarized 129Xe. Magn Reson Med. 71 (1), 339-344 (2014).
  39. Collier, G. J., et al. Observation of cardiogenic flow oscillations in healthy subjects with hyperpolarized 3He MRI. J Appl Physiol. 119 (9), 1007-1014 (2015).
  40. Niedbalski, P. J., et al. Protocols for multi-site trials using hyperpolarized (129) Xe MRI for imaging of ventilation, alveolar-airspace size, and gas exchange: A position paper from the (129) Xe MRI clinical trials consortium. Magn Reson Med. 86 (6), 2966-2986 (2021).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Ruppert, K., Loza, L., Amzajerdian, F., Hamedani, H., Baron, R., Kadlecek, S., Rizi, R. Quantitative Measure of Lung Structure and Function Obtained from Hyperpolarized Xenon Spectroscopy. J. Vis. Exp. (201), e66038, doi:10.3791/66038 (2023).

View Video