Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Neuroscience

在实验视神经脱髓鞘模型大鼠视觉诱发电位记录

Published: July 29, 2015 doi: 10.3791/52934

Protocol

伦理声明:所有涉及动物的程序是按照实践的护理和使用动物用于科学目的和ARVO声明的动物在眼科和视觉研究中使用的指导方针的澳大利亚准则进行的,并经麦考瑞大​​学动物伦理委员会。

1. VEP植入电极

  1. 麻醉动物通过腹膜内注射氯胺酮(75毫克/千克)和美托咪定(0.5毫克/千克)。
    注意:按照麻醉诱导,停药观察反射(捏测试,角膜和眼睑反射等)和它们的不存在作为指示开始手术。持续监测动物在整个手术和管理附加麻醉剂药物(每补足初始氯胺酮剂量的10%),如果反射都存在。成年大鼠(> 12周)中使用的实验。
  2. 剃手术区的皮肤上。放置在一个加热垫(37℃)的动物的手术过程中保持体温。通过聚维酮碘局部应用准备的皮肤。应用手术铺巾。应用外用眼药膏,以防止在全身麻醉下角膜干燥。通过使用无菌器械无菌维持。
  3. 做一个纵向切开皮肤上的头部皮肤的中线。清除结缔组织达到颅骨良好的曝光。
  4. 仔细,钻小毛刺的孔手动用微型手钻在前囱后方7毫米和3mm横向于中线。
  5. 通过头骨向皮质(区域17)的植入物螺旋电极,穿透皮质到大约0.5mm的深度。植入螺钉参考电极上的中线3毫米延髓前囟门。应用牙科水泥包住并固定螺丝(并不总是需要)。
  6. 缝合头部的皮肤上,给予抗生素软膏在皮肤上,并允许动物RECO从版本上麻醉变暖垫。
    注意:可替换地,电极可被暴露在外面,以便皮肤不需要在每个记录被重新打开。时立即停止手术,但前麻醉恢复,管理一个非甾体抗炎药(NSAID)(如果不施用预可操作)或阿片类镇痛剂。监测动物不断,直到从麻醉剂,并充分卧床完全恢复。
  7. 允许至少1周为动物从手术VEP记录之前恢复。

2.视神经注射

  1. 麻醉动物,备皮和应用悬垂如上(1.1和1.2)。
  2. 作为1〜1.5厘米的切口在一个随机选择的眼睛的轨道上方的皮肤上。打开皮下组织,达到用细虹膜剪刀眶腔。打开结膜和前在手术显微镜下Tenon囊。
  3. 收回眼肌肉和眶内泪腺以露出视神经大约3毫米的长度。纵向使用眼用刀片打开视神经周围硬脑膜和蛛网膜物质层。
  4. 将玻璃吸管进入视神经处到地球的距离为2毫米后。在玻璃微附着于Hamilton注射器。
  5. 注射1%溶血卵磷脂(0.4 - 1.0微升,0.02%Evan的蓝不具有对髓鞘形成的影响)慢慢进入神经大约过了一段30秒。
  6. 缝合皮肤切口。应用抗生素软膏以防止感染。对侧眼可作为电生理学记录的内部控制。
  7. 上放置一个变暖垫动物从麻醉中恢复。

3. VEP记录

  1. 麻醉动物,并准备皮肤1.1和1.2。
    注意:麻醉药较低剂量可用于电RECO录制(氯胺酮40毫克/公斤和美托咪定0.25毫克/千克)。
  2. 将大鼠在暗室内,并允许它适应黑暗为5 - 30分钟。在某些情况下,老鼠可能分别为暗适应O / N为暗光或适合适光VEP录音8。
  3. 保持体温在37±0.5℃,由homoeothermic毯系统与直肠温度计探针。
  4. 扩张1.0%托眼药水的学生。打开上方的皮肤头骨来访问预放置在原位螺钉电极。
  5. 连接螺钉在刺激眼睛的对侧视觉皮层和参考螺钉到放大器。插入针电极插入尾部作为接地。测量和保持低于5kΩ的电极的阻抗。
  6. 直接放置在眼睑周围皮肤迷你Ganzfeld刺激提供卓越的眼睛隔离7。需要的刺激器的照明将被事先标定用光度计。
  7. 通过闪烁递送光刺激的100倍在1Hz的频率,具有1到100赫兹的低和高带通滤波器的设置,分别。信号采样率是在5千赫。
    注意:信号应取样至少在约250 - 300赫兹,确保更多的两个样本在每个周期期间被收集。
  8. 缝合皮肤背部和保持动物在变暖垫从麻醉中恢复。记录可以重复地记录在个别动物以监测在一段时间的功能变化。
  9. 在终点,施用过量注射戊巴比妥钠(100毫克/千克,IP)的安乐死的动物。确认安乐死心脏骤停,呼吸停止和降低体温。

4,组织准备和组织学

  1. 从实施安乐死的动物中取出视神经显微镜下,修复1%多聚甲醛O / N的组织。
  2. <LI>用生理盐水彻底冲洗组织。对待组织在自动组织处理器和嵌入石蜡。使用旋转切片机 - (10微米5)的切断面。
    注:对于免疫组织化学研究,修复组织中1%多聚甲醛,洗净用盐水和孵化与30%蔗糖O / N。在华侨城中嵌入组织包埋剂,用低温恒温器进行冷冻切片。
  3. 在孵育0.1%快蓝溶液部分,如Luxol(95%乙醇)O / N为56℃。区分在0.05%碳酸锂的部分30秒,然后70%乙醇中再持续30秒。最后,安装部分之前染液以0.1%甲酚紫溶液30秒。使用快速蓝染色,以确定视神经髓鞘5。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

再现的帧内期间VEP迹线示于图1和N 1延迟一个显著延迟视神经注射后可以看到。脱髓鞘局部视神经病变可使用Luxol坚牢蓝染色5的组织学切片中观察到。 图2示出了代表性的部分有一个小焦点脱髓鞘病变视神经的中心。需要注意的是横截面并不代表病变的总体积。脱髓鞘区域可对神经推断病灶体积通过使用三维重建的每个连续的横截面来测量。我们已经证明了使用该模型在我们以前的研究延迟延迟和病灶体积之间有很强的相关性,也没有VEP延迟延迟在注射盐水的对照5。

据认为,以下的闪光照明早VEP组分是更稳定的7 5与脱髓鞘最强的线性关系。因此,我们建议N1延迟应该用于数据分析和为在评估髓鞘再生疗法的影响纵向VEP监控。 VEP的振幅,虽然相比于延迟更多变,更表示在视神经6轴突的功能。脑电图为基础的缩放可以考虑幅度分析9。

图1
视神经注射后图1的VEP延迟。代表VEP痕迹从之前的个体大鼠和视神经显微注射(0.8微升溶血卵磷脂)后2天。 VEP记录重复的每一天(会期内痕迹秀中的n相同的颜色),用于演示本VEP记录协议的可重复性。 (垂直比例尺:10μV;水平比例尺:10毫秒)。 请点击此处查看该图的放大版本。

见图2
图2.脱髓鞘在视神经。视神经从溶血卵磷脂显微注射后的大鼠代表性横截面。髓鞘成分被染成蓝色利用luxol蓝快。脱髓鞘的小病灶可以看出,在该截面的中心。脱髓鞘区域可以在纵向连续截面来估算三维尺度病变体积来衡量。 请点击此处查看该图的放大版本。

Subscription Required. Please recommend JoVE to your librarian.

Acknowledgments

这项研究是由眼科研究所澳大利亚(ORIA)的支持。我们感谢教授阿尔吉斯Vingrys和Bang裴博士,墨尔本大学,最初用于帮助我们开发VEP记录技术。

Materials

Name Company Catalog Number Comments
Ketamine 100 mg/ml (Ketamil) Troy Laboratories AC 116
Medetomidine 1 mg/ml (Domitor) Pfizer sc-204073
Tropicamide 1.0% (Mydriacyl) Alcon sc-202371
Homoeothermic blanket system Harvard Apparatus NC9203819
Impedance meter  Grass F-EZM5
Screw electrodes  Micro Fasteners M1.0×3mm Csk Slot M/T 304 S/S
Subdermal needle electrodes  Grass F-E3M-72
Rapid Repair  DeguDent GmbH
Light-emitting diode  Nichia NSPG300A
Bioamplifier CWE, Inc. BMA-400
CED system Cambridge Electronic Design, Ltd. Power1401
Hamilton syringe  Hamilton 87930
Lysolecithin Sigma L4129
Evan’s blue  Sigma E2129

DOWNLOAD MATERIALS LIST

References

  1. Balcer, L. J. Clinical practice. Optic neuritis. N Engl J Med. 354 (12), 1273-1280 (2006).
  2. Lassmann, H. Multiple sclerosis as a neuronal disease. Waxman, S. G. , Elsevier. 153-164 (2005).
  3. Fahle, M., Bach, M. Principles and practice of clinical electrophysiology of vision. Heckenlively, J., Arden, G. , MIT Press. 207-234 (2006).
  4. Halliday, A. M., McDonald, W. I., Mushin, J. Delayed visual evoked response in optic neuritis. Lancet. 1, 982-985 (1972).
  5. You, Y., Klistorner, A., Thie, J., Graham, S. L. Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis. Invest Ophthalmol Vis Sci. 52 (9), 6911-6918 (2011).
  6. You, Y., Klistorner, A., Thie, J., Gupta, V. K., Graham, S. L. Axonal loss in a rat model of optic neuritis is closely correlated with visual evoked potential amplitudes using electroencephalogram based scaling. Invest Ophthalmol Vis Sci. 53, 3662 (2012).
  7. You, Y., Klistorner, A., Thie, J., Graham, S. L. Improving reproducibility of VEP recording in rats: electrodes, stimulus source and peak analysis. Doc Ophthalmol. 123 (2), 109-119 (2011).
  8. Heiduschka, P., Schraermeyer, U. Comparison of visual function in pigmented and albino rats by electroretinography and visual evoked potentials. Graefes Arch Clin Exp Ophthalmol. 246 (11), 1559-1573 (2008).
  9. You, Y., Thie, J., Klistorner, A., Gupta, V. K., Graham, S. L. Normalization of visual evoked potentials using underlying electroencephalogram levels improves amplitude reproducibility in rats. Invest Ophthalmol Vis Sci. 53 (3), 1473-1478 (2012).
  10. Levkovitch-Verbin, H. Animal models of optic nerve diseases. Eye (Lond). 18 (11), 1066-1074 (2004).
  11. Henry, K. R., Rhoades, R. W. Relation of albinism and drugs to the visual evoked potential of the mouse). J Comp Physiol Psychol. 92 (2), 271-279 (1978).
  12. Murrell, J. C., Waters, D., Johnson, C. B. Comparative effects of halothane, isoflurane, sevoflurane and desflurane on the electroencephalogram of the rat. Lab Anim. 42 (2), 161-170 (2008).
  13. Makela, K., Hartikainen, K., Rorarius, M., Jantti, V. Suppression of F-VEP during isoflurane-induced EEG suppression. Electroencephalogr Clin Neurophysiol. 100 (3), 269-272 (1996).
  14. Boyes, W. K., Padilla, S., Dyer, R. S. Body temperature-dependent and independent actions of chlordimeform on visual evoked potentials and axonal transport in optic system of rat. Neuropharmacology. 24 (8), 743-749 (1985).
  15. Hetzler, B. E., Boyes, W. K., Creason, J. P., Dyer, R. S. Temperature-dependent changes in visual evoked potentials of rats. Electroencephalogr Clin Neurophysiol. 70 (2), 137-154 (1988).
  16. Mitchell, J. The effects of lysolecithin on non-myelinated axons in vitro. Acta Neuropathol. 58 (4), 243-248 (1982).
  17. Meyer, R., et al. Acute neuronal apoptosis in a rat model of multiple sclerosis. J Neurosci. 21 (16), 6214-6220 (2001).
  18. Lachapelle, F., et al. Failure of remyelination in the nonhuman primate optic nerve. Brain Pathol. 15 (3), 198-207 (2005).

Tags

神经科学,101期,视神经,视觉诱发电位,视神经炎,脱髓鞘,视觉电生理,髓鞘再生
在实验视神经脱髓鞘模型大鼠视觉诱发电位记录
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

You, Y., Gupta, V. K., Chitranshi,More

You, Y., Gupta, V. K., Chitranshi, N., Reedman, B., Klistorner, A., Graham, S. L. Visual Evoked Potential Recording in a Rat Model of Experimental Optic Nerve Demyelination. J. Vis. Exp. (101), e52934, doi:10.3791/52934 (2015).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter