Summary

体细胞重编程的动力学测量和实时可视化

Published: July 30, 2016
doi:

Summary

在本研究中提出的协议描述用于通过使用流式细胞仪分析阳性和阴性的多能干细胞标志物的动力学测定的重编程级数的实时监测的方法。该协议还包括的iPSC产生过程中的形态和标志物或报告表达的基于成像的评估。

Abstract

Somatic reprogramming has enabled the conversion of adult cells to induced pluripotent stem cells (iPSC) from diverse genetic backgrounds and disease phenotypes. Recent advances have identified more efficient and safe methods for introduction of reprogramming factors. However, there are few tools to monitor and track the progression of reprogramming. Current methods for monitoring reprogramming rely on the qualitative inspection of morphology or staining with stem cell-specific dyes and antibodies. Tools to dissect the progression of iPSC generation can help better understand the process under different conditions from diverse cell sources.

This study presents key approaches for kinetic measurement of reprogramming progression using flow cytometry as well as real-time monitoring via imaging. To measure the kinetics of reprogramming, flow analysis was performed at discrete time points using antibodies against positive and negative pluripotent stem cell markers. The combination of real-time visualization and flow analysis enables the quantitative study of reprogramming at different stages and provides a more accurate comparison of different systems and methods. Real-time, image-based analysis was used for the continuous monitoring of fibroblasts as they are reprogrammed in a feeder-free medium system. The kinetics of colony formation was measured based on confluence in the phase contrast or fluorescence channels after staining with live alkaline phosphatase dye or antibodies against SSEA4 or TRA-1-60. The results indicated that measurement of confluence provides semi-quantitative metrics to monitor the progression of reprogramming.

Introduction

源自患者的诱导多能干细胞(iPS细胞)是用于细胞治疗和药物筛选有希望的工具。它们提供了细胞治疗自体来源。此外,它们包括非常广泛的一套遗传背景,使得遗传疾病超出当前的胚胎干细胞(ESC)的线路将允许进行详细的体外分析。最近的进展已经导致几种方法的发展,用于产生iPSCs的,包括与仙台病毒,附加型质粒或mRNA的1,2-重新编程。值得注意的是,不同的重编程方法具有不同的效率和安全性的水平相关,并有可能在影响其是否适宜用于各种用途的其他方法不同。随着各种重编程技术的可用性,它已开发用于评估重编程过程的方法变得很重要。大多数现有的方法依赖于形态和染色质检查用干细胞特异性的染料和抗体。一个最近开发的方法使用的慢病毒荧光记者,是对特定的PSC-miRNA的或分化的细胞特异性的mRNA 3敏感。这种监测方法便于选择和重新编程的技术对不同的情况下的优化。例如,CDy1已经用作早期的iPSC的荧光探针以筛选重新编程调制器4。观察和比较不同的重编程实验的能力也更好地了解这个过程本身的关键。例如,现在已知的是一些体细胞类型更容易比其它5重新编程,并且使细胞重新编程6-8中经过中间状态。不幸的是,重编程过程所依据的机制仍然不完全了解,因此,重编程方法之间的确切的差别也仍然为defined。因此,对于监测方法,评估和比较重编程事件仍然是干细胞领域的关键。

在这个协议中所描述的方法允许监控和重编程过程的评估,并说明这些技术如何可以用来比较不同组的重编程试剂。第一方法涉及流式细胞仪使用针对阳性和阴性的多能干细胞(PSC)标记的抗体的组合进行分析。第二种方式耦合实时成像和总合流(被细胞覆盖的百分比表面积)和标记信号(由荧光信号所覆盖的百分比表面积)的合流的测量。

Protocol

1.Solution和介质制备工艺 基底膜基质(从Engelbreth -霍尔姆-群肿瘤和纯化) 在4℃缓慢融化冰基底膜基质(5毫升)过夜。 稀释原液1:1在无菌,预先冷却的15毫升锥形管5 1ml冰冷,无菌的DMEM / F-12培养基中。分配等分入预冷的1.5毫升无菌微离心管,并立即在-20℃下储存。 过夜1基底膜基质等分试样在4℃:前使用,解冻冷冻的1。在使用时,进一步稀释1:1等份另外…

Representative Results

监测重新编程动力学采用流式细胞仪 CD44是一种纤维原细胞标记,而SSEA4是PSC标记6,10。从该表达模式预期,流式细胞仪BJ成纤维细胞显示了一个SSEA4 – CD44 +群体便于与未染色的样品组合象限门的创作。在DF1成纤维细胞的仙台病毒的重新编程,CD44逐渐丧失,而SSEA4缓慢表示。在与仙台病毒转导后第3…

Discussion

This study provides strategies for monitoring and tracking of the reprogramming process using flow cytometry and real-time imaging-based analysis. The critical steps in the protocol are initiating reprogramming, measuring reprogramming progression based on marker expression and real-time monitoring of reprogramming. Any reprogramming method of choice can be used but here we focus on Sendai based reprogramming of human fibroblasts. The advantage of this method is the ease of use and consistent high efficiency of reprogram…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢乍得麦克阿瑟有益的讨论。

Materials

DMEM, high glucose, GlutaMAXSupplement, pyruvate Thermo Fisher Scientific 10569-010
Fetal Bovine Serum, embryonic stem cell-qualified, US origin Thermo Fisher Scientific 16141-061
MEM Non-Essential Amino Acids Solution (100X) Thermo Fisher Scientific 11140-050
Trypsin-EDTA (0.05%), phenol red  Thermo Fisher Scientific 25300-054
Mouse (ICR) Inactivated Embryonic Fibroblasts Thermo Fisher Scientific A24903
Attachment Factor Protein (1X) Thermo Fisher Scientific S-006-100
DMEM/F-12, GlutaMAX supplement Thermo Fisher Scientific 10565-018
KnockOut Serum Replacement Thermo Fisher Scientific 10828010
2-Mercaptoethanol (55 mM) Thermo Fisher Scientific 21985-023
Collagenase, Type IV, powder Thermo Fisher Scientific 17104-019
TrypLE Select Enzyme (1X), no phenol red  Thermo Fisher Scientific 12563-011
DPBS, no calcium, no magnesium  Thermo Fisher Scientific 14190-144
Geltrex LDEV-Free, hESC-Qualified, Reduced Growth Factor Basement Membrane Matrix Thermo Fisher Scientific A1413302
Essential 8 Medium Thermo Fisher Scientific A1517001
FGF-Basic (AA 1-155) Recombinant Human Protein Thermo Fisher Scientific PHG0264
UltraPure 0.5M EDTA, pH 8.0 Thermo Fisher Scientific 15575-020
Bovine Albumin Fraction V (7.5% solution) Thermo Fisher Scientific 15260-037
HEPES (1 M) Thermo Fisher Scientific 15630-080
Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Scientific 15140-122
InSolution Y-27632 EMD Millipore 688001
CytoTune-iPS Sendai Reprogramming Kit Thermo Fisher Scientific A1378001
CytoTune-iPS 2.0 Sendai Reprogramming Kit Thermo Fisher Scientific A16517
Countess II Automated Cell Counter Thermo Fisher Scientific AMQAX1000
Countess Cell Counting Chamber Slides Thermo Fisher Scientific C10228
BJ ATCC Human Foreskin Fibroblasts, Neonatal ATCC CRL-2522
DF1 Adult Human Dermal Fibroblast Thermo Fisher Scientific N/A
BG01V/hOG Cells Variant hESC hOct4-GFP Reporter Cells Thermo Fisher Scientific R7799-105
IncuCyte ZOOM Essen BioScience
SSEA-4 Antibody, Alexa Fluor 647 conjugate (MC813-70) Thermo Fisher Scientific SSEA421
SSEA-4 Antibody, Alexa Fluor 488 conjugate (eBioMC-813-70 (MC-813-70)) Thermo Fisher Scientific A14810
SSEA-4 Antibody (MC813-70) Thermo Fisher Scientific 41-4000
TRA-1-60 Antibody (cl.A) Thermo Fisher Scientific  41-1000
CD44 Rat Anti-Human/Mouse mAb (clone IM7), PE-Cy5 conjugate Thermo Fisher Scientific A27094
CD44 Alexa Fluor 488 Conjugate Kit for Live Cell Imaging Thermo Fisher Scientific A25528
CD44 Rat Anti-Human/Mouse mAb (Clone IM7) Thermo Fisher Scientific RM-5700 (no longer available)
Goat anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugate Thermo Fisher Scientific  A-11029
Goat anti-Rat IgG (H+L) Secondary Antibody, Alexa Fluor 594 conjugate Thermo Fisher Scientific  A-11007
Alkaline Phosphatase Live Stain Thermo Fisher Scientific A14353
TRA-1-60 Alexa Fluor 488 Conjugate Kit for Live Cell Imaging Thermo Fisher Scientific A25618
CD24 Mouse Anti-Human mAb (clone SN3), FITC conjugate Thermo Fisher Scientific MHCD2401
beta-2 Microglobulin Antibody, FITC conjugate (B2M-01) Thermo Fisher Scientific A15737
EpCAM / CD326 Antibody, FITC conjugate (VU-1D9) Thermo Fisher Scientific A15755
CD73 / NT5E Antibody (7G2) Thermo Fisher Scientific 41-0200
VECTOR Red Alkaline Phosphatase (AP) Substrate Kit Vector Laboratories SK-5100
Zeiss Axio Observer.Z1 microscope  Carl Zeiss 491912-0003-000
FlowJo Data Analysis Software FLOJO, LLC N/A
Attune Accoustic Focusing Cytometer, Blue/Red Laser Thermo Fisher Scientific Use Attune NXT 
S3e Cell Sorter (488/561 nm) BIO-RAD 1451006
Falcon 12 x 75 mm Tube with Cell Strainer Cap Corning 352235
Falcon 15 mL, high-clarity, dome-seal screw cap Corning 352097
Falcon T-75 Flask Corning 353136
Falcon T-175 Flask Corning 353112
Falcon 6-well dish Corning 353046
HERAEUS HERACELL CO2 ROLLING INCUBATOR Thermo Fisher Scientific 51013669
Nonstick, RNase-free Microfuge Tubes, 1.5 mL AM12450
HulaMixer Sample Mixer 15920D

References

  1. Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 10, 678-684 (2012).
  2. Robinton, D. A., Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature. 481, 295-305 (2012).
  3. Kamata, M., Liang, M., Liu, S., Nagaoka, Y., Chen, I. S. Live cell monitoring of hiPSC generation and differentiation using differential expression of endogenous microRNAs. PLoS One. 5, e11834 (2010).
  4. Vendrell, M., Zhai, D., Er, J. C., Chang, Y. T. Combinatorial strategies in fluorescent probe development. Chem Rev. 112, 4391-4420 (2012).
  5. Aasen, T., et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 26, 1276-1284 (2008).
  6. Quintanilla, R. H., Asprer, J. S., Vaz, C., Tanavde, V., Lakshmipathy, U. CD44 is a negative cell surface marker for pluripotent stem cell identification during human fibroblast reprogramming. PLoS One. 9, e85419 (2014).
  7. Papp, B., Plath, K. Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res. 21, 486-501 (2011).
  8. Nefzger, C. M., Alaei, S., Knaupp, A. S., Holmes, M. L., Polo, J. M. Cell surface marker mediated purification of iPS cell intermediates from a reprogrammable mouse model. J Vis Exp. , e51728 (2014).
  9. Xu, C., et al. Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells. 22, 972-980 (2004).
  10. International Stem Cell Initiative. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 25, 803-816 (2007).
  11. Singh, U., et al. Novel live alkaline phosphatase substrate for identification of pluripotent stem cells. Stem Cell Rev. 8, 1021-1029 (2012).
  12. Naujok, O., Lenzen, S. A critical re-evaluation of CD24-positivity of human embryonic stem cells differentiated into pancreatic progenitors. Stem Cell Rev. 8, 779-791 (2012).
  13. Ramirez, J. M., et al. Brief report: benchmarking human pluripotent stem cell markers during differentiation into the three germ layers unveils a striking heterogeneity: all markers are not equal. Stem Cells. 29, 1469-1474 (2011).
  14. Huang, H. P., et al. Epithelial cell adhesion molecule (EpCAM) complex proteins promote transcription factor-mediated pluripotency reprogramming. J Biol Chem. 286, 33520-33532 (2011).
  15. Kolle, G., et al. Identification of human embryonic stem cell surface markers by combined membrane-polysome translation state array analysis and immunotranscriptional profiling. Stem Cells. 27, 2446-2456 (2009).
  16. Thyagarajan, B., et al. Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. 26, 119-126 (2008).
check_url/cn/54190?article_type=t

Play Video

Cite This Article
Quintanilla Jr., R. H., Asprer, J., Sylakowski, K., Lakshmipathy, U. Kinetic Measurement and Real Time Visualization of Somatic Reprogramming. J. Vis. Exp. (113), e54190, doi:10.3791/54190 (2016).

View Video