Summary

12-Dithiolane 改性自组装肽的合成与表征

Published: August 20, 2018
doi:

Summary

一种合成 12-dithiolane 修饰肽的协议, 以及肽自组装产生的超分子结构的表征。

Abstract

本报告的重点是合成一个 n-终点 12-dithiolane 修饰自组装肽, 并描述了由此产生的自组装超分子结构。合成路线利用固相肽合成与 dithiolane 前体分子的树脂耦合, 3-(acetylthio)-2-(acetylthiomethyl) 丙酸, 和微波辅助硫代乙酸脱的肽从树脂最终裂解前的 N 终点, 产生 12-dithiolane 修饰肽。用高效液相色谱 (HPLC) 纯化 12-dithiolane 肽, 从 Aβ肽与阿尔茨海默病相关的核核中提取, 该肽显示为自组装成交叉β淀粉样纤维。介绍了用傅里叶变换红外光谱 (IR)、环形二色谱光谱 (CD) 和透射电镜 (TEM) 表征淀粉样纤维的协议。采用 12-dithiolane 基团对特征自组装肽进行 n-末端修饰的方法, 现在可以作为模型系统来开发装配后的修改策略, 并探讨动态共价键化学在超分子肽碳纤维表面。

Introduction

固相肽合成中的健壮肽键形成化学和控制序列长度和成分的能力使自组装成超分子结构的多肽成为一个研究领域。控制和稳定肽自组装结构的因素, 包括侧链空间和静电相互作用, 氢键和疏水效应1, 作为一套设计规则。随着对这些基本设计规则的研究继续进展, 肽自组装的逻辑下一步包括扩大肽基结构和功能的多样性。自组装多肽是一种多功能生物材料, 通过调整肽序列或装配条件234, 为许多医学应用而使用, 发展战略为对多肽纳米纤维56789的组装后的修改仍然是一个相对未开发的领域。

超分子结构表面的动态二硫化物交换和硫醇化学是一个有潜力产生新的和功能性生物材料的领域。12-dithiolane 基团 (通常是硫辛酸 (la) 或 asparagusic 酸 (aa) 的衍生物) 在脂质体系统1011、嵌段共聚物1213和组织锚在表面14,15。在这里, 我们报告的合成和表征的自组装肽来源于与阿尔茨海默病相关的 Aβ肽的核核, 在 N 终点被修改 12-dithiolane 功能组16, 17。由此产生的超分子纤维作为实验平台, 研究了淀粉样纤维的超分子表面的二硫交换和硫醇反应性.18

Protocol

1. 12-Dithiolane 改性肽的合成与纯化 dithiolane 前体的合成, 3-(acetylthio)-2-(acetylthiomethyl) 丙酸19。 添加1克 3-溴-2-(溴甲基) 丙酸 (1 equiv) 溶解在极小量的1米氢氧化钠 (约4毫升) 到一个25毫升的圆形底部反应瓶搅拌在55摄氏度。在氮气气氛下, 将反应瓶密封在一个隔膜和地方。 在4毫升的去离子水和3毫升的2米硫酸 (H2,4) 中, 制备含有1.49 克?…

Representative Results

除了最初一步合成的 dithiolane 前体分子, 其余的 12-dithiolane 改良肽合成发生在坚实的支持 (图 1A)。3-溴-2-溴甲基丙酸转化为 3-(acetylthio)-2-(acetylthiomethyl) 丙酸, dithiolane 前驱体, 由1H 和13C 核磁共振 (图 1B和c) 确认, 然后再耦合到自由肽的 n-末端胺仍然在树脂。用氢氧化铵脱硫代乙酸到硫醇, 在 12-dithiolane ?…

Discussion

本文讨论了 n-端 12-dithiolane 修饰自组装肽的合成和纯化的细节, 以及由此产生的超分子结构的特性。本报告所报道的 12-dithiolane 肽的合成具有优点, 包括一步法合成制备 dithiolane 前驱体、3-(acetylthio)-2-(acetylthiomethyl) 丙酸, 以及在树脂上微波脱反应的前体硫代乙酸保护基团, 利用氢氧化铵作为一种较安全的替代物, 脱29的毒性肼, 产生氧化的 12-dithiolane 基团。12-dithiolane 肽 (<strong class="x…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢 Scanley 博士为她的技术培训和帮助使用 TEM 在康涅狄格州立大学 (CSCU) 纳米技术中心和 Ishita 博士 Mukerji 在卫斯理大学访问她的 CD分 光 光度计。所报告的工作部分是在美国宇航局康涅狄格州空间赠款联合会的费尔菲尔德大学科学研究所和国家科学基金会 CHE-1624774 的资助下进行的。

Materials

Rink amide MBHA resin, high load Gyros Protein Technologies RAM-5-HL Avoid contact with skin and eyes; do not inhale
N,N-Dimethylformamide Fisher Scientific D119-4 Flammable liquid and vapor; irritating to eyes and skin; Use personal protective equipment; keep away from open flame
Fmoc-L-Val-OH Gyros Protein Technologies FLA-25-V Wear personal protective equipment; do not inhale
Fmoc-L-Leu-OH Gyros Protein Technologies FLA-25-L Wear personal protective equipment; do not inhale
Fmoc-L-Lys(Boc)-OH Gyros Protein Technologies FLA-25-KBC Wear personal protective equipment; do not inhale
Fmoc-L-Phe-OH Gyros Protein Technologies FLA-25-F Wear personal protective equipment; do not inhale
Fmoc-L-Ala-OH Gyros Protein Technologies FLA-25-A Wear personal protective equipment; do not inhale
Fmoc-L-Gln(Trt)-OH Gyros Protein Technologies FLA-25-QT Wear personal protective equipment; do not inhale
N,N,N′,N′-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate Gyros Protein Technologies 26432 Causes skin, eye and respiratory irritation; do not inhale; use under hood or in well ventilated area
0.4 M N-methylmorpholine in DMF Gyros Protein Technologies PS3-MM-L highly flammable; wear personal protective equipment; keep away from heat and keep container tightly closed; do not inhale or swallow; wash skin thoroughly after handling
20% piperidine in DMF Gyros Protein Technologies PS3-PPR-L Causes severe eye and skin burns; Flammable Liquid and vapor; Do not inhale
dichloromethane Fisher Scientific D37-4 May cause cancer; Do not inhale; Wear personal protective equipment; use under hood only; if contacted rise with water for at least 15 minutes and obtain medical attention
acetonitrile Fisher Scientific A998-4 Flammable; irritating to eyes; Use personal protective equipment; Use only under a fume hood; keep away from open flame or hot surface; if contacted rinse wiith water for at least 15 minutes and obtain medical attention
trifluoroacetic acid Fisher Scientific A116-50 Causes severe burns; do not inhale; harmful to aquatic life; use personal protective equipment; use only under fume hood; if contacted rinse with water for at least 15 minutes and obain immediate medical attention
4% uranyl acetate Electron Microscopy Sciences 22400-4 Do not inhale; harmful to aquatic life
4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid Acros Organics AC172571000 Do not inhale; use outdoors or in well-ventilated area
nitrogen Gas TechAir Contents under pressure, may explode if heated
3-bromo-2-(bromomethyl)propionic acid Alfa Aesar AAA1963014 Do not inhale; causes irritation to skin and eyes; corrosive
sodium hydroxide Fisher Scientific S318-100 Use personal protective equipment; use only under fume hood; if contact rinse area for at least 15 minutes and obtain medical attention
potassium thioacetate Acros Organics AC221300250 Causes skin and eye irritation; do not inhale; use personal protective equipment
sulfuric acid Fisher Scientific SA213 Causes burns; keep away from water; keep away from combustible material; do not inhale; use personal protective equipment; if contact rinse area for at least 15 minutes and obtain medical attention
chloroform-d Acros Organics AC320690075 Possible cancer hazard; irritating to skin and eyes; do not inhale; Use personal protective equipment; use only under fume hood; If contact rinse area for at least 15 minutes and obtain medical attention
chloroform Fisher Scientific C298-4 Possible cancer hazard; irritating to skin and eyes; do not inhale; Use personal protective equipment; use only under fume hood; If contact rinse area for at least 15 minutes and obtain medical attention
N,N-diisopropylethylamine Acros Organics AC367841000 Highly flammable; harmful to aquatic life; wear personal protective equipment; do not swallow
ammonium hydroxide Fisher Scientific A669S-500 Corrosive; do not inhale
methanol Fisher Scientific A452-4 Flammable liquid and vapor; use personal protective equipment; do not inhale; If contact rinse area for at least 15 minutes and obtain medical attention
triisopropylsilane Sigma Aldrich 233781 Flammable; use personal proctective safety equipment; keep container tightly closed
diethyl ether Fisher Scientific E138-1 Extremely flammable; Irritating to skin and eyes; Use personal protective equipment
2,5-dihydroxybenzoic acid Sigma Aldrich 39319-10x10MG-F do not inhale; irritating to skin and eyes
alpha-cyano-4-hydroxycinnamic acid Alfa Aesar AAJ67635EXK
c18 zip-tip Millipore ZTC18S096
tris(2-carboxyethyl) phospine hydrochloride Thermo Scientific PI20490
silica gel 60 F254 coated aluminum-backed TLC sheets EMD Millipore 1.05549.0001
Thin walled Precision NMR tubes Bel-Art 663000585 5mm O.D.
All-plastic Norm-Ject syringes Air Tite AL10
single-use needle BD PrecisionGlide BD 305185 used needles get disposed on in sharps waste container
disposable fritted syringe Torviq SF1000LL 10mL fritted syringes were used in the report, but larger syringes are avaibale if needed for larger scale synthesis.
carbon grid Ted Pella, Inc. CF200-CU Make sure to prepare samples and staining on the carbon grid side, not the shiny copper side of grid
self-closing tweezers Electron Microscopy Sciences 78318-3X very sharp tips, length: 120 mm
0.1 mm short path length cell Starna Cells, Inc. 20/C-Q-0.1 Fragile
10mL Vessel Caps CEM 909210
10mL Pressure Vessels CEM 908035
Aeris Semi-Prep HPLC column Phenomenex 00F-4632-N0 150 x 10mm
cell holder Starna Cells, Inc. CH-2049 Needed when using short pathlength cells
PS3 peptide synthesizer Gyros Protein Technologies
DiscoverSP Microwave Reactor CEM
centrifuge HERMLE Z 206 A used a fixed 6×50 mL rotor
HPLC Shimadzu UV Detector
nuclear magnetic resonance spectrometer Avance, Bruker 300 MHz
MALDI-TOF mass spectrometer Axima Confidence, Shimadzu
lyophilizer Millrock Technology BT85A
Fourier-Transform Infrared Spectrometer Alpha Tensor, Bruker
Transmission Electron Microscope Tecnai Spirit, FEI Used with Gatan Orius Fiberoptic CCD digital camera. Accessed at CSCU Center for Nanotechnology
Circular Dichroism Spectropolarimeter J-810, JASCO Used with a six-cell Peltier temperature controller. Accessed at Wesleyan University.

References

  1. Wang, J., Liu, K., Xing, R., Yan, X. Peptide self-assembly: Thermodynamics and kinetics. Chemical Society Reviews. 45, 5589-5604 (2016).
  2. Dong, R., et al. Functional supramolecular polymers for biomedical applications. Advanced Materials. 27, 498-526 (2015).
  3. Edwards-Gayle, C. J. C., Hamley, I. W. Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Organic and Biomolecular Chemistry. 15, 5867-5876 (2017).
  4. Goor, O. J. G. M., Hendrikse, S. I. S., Dankers, P. Y. W., Meijer, E. W. From supramolecular polymers to multi-component biomaterials. Chemical Society Reviews. 46, 6621-6637 (2017).
  5. DiMaio, J. T. M., Doran, T. M., Ryan, D. M., Raymond, D. M., Nilsson, B. L. Modulating supramolecular peptide hydrogel viscoelasticity using biomolecular recognition. Biomacromolecules. 18, 3591-3599 (2017).
  6. DiMaio, J. T. M., Raymond, D. M., Nilsson, B. L. Display of functional proteins on supramolecular peptide nanofibrils using a split-protein strategy. Organic and Biomolecular Chemistry. 15, 5279-5283 (2017).
  7. Mahmoud, Z. N., Gunnoo, S. B., Thomson, A. R., Fletcher, J. M., Woolfson, D. N. Bioorthogonal dual functionalization of self-assembling peptide fibers. Biomaterials. 32, 3712-3720 (2011).
  8. Petkau-Milroy, K., Uhlenheuer, D. A., Spiering, A. J. H., Vekemans, J. A. J. M., Brunsveld, L. Dynamic and bio-orthogonal protein assembly along a supramolecular polymer. Chemical Science. 4, 2886-2891 (2013).
  9. Li, A., et al. Neurofibrillar tangle surrogates: Histone H1 binding to patterned phosphotyrosine peptide nanotubes. 生物化学. 53, 4225-4227 (2014).
  10. Sadownik, A., Stefely, J., Regen, S. L. Polymerized liposomes formed under extremely mild conditions. Journal of the American Chemical Society. 108, 7789-7791 (1986).
  11. Zhang, N., et al. ATN-161 Peptide functionalized reversibly cross-linked polymersomes mediate targeted doxorubicin delivery into melanoma-bearing C57BL/6 mice. Molecular Pharmaceutics. 14, 2538-2547 (2017).
  12. Margulis, K., et al. Formation of polymeric nanocubes by self-assembly and crystallization of dithiolane-containing triblock copolymers. Angewandte Chemie International Edition. 56, 16357-16362 (2017).
  13. Zhang, X., Waymouth, R. 1,2-Dithiolane-Derived Dynamic, Covalent Materials: Cooperative Self-Assembly and Reversible Cross-Linking. Journal of the American Chemical Society. 139, 3822-3833 (2017).
  14. Sakia, N., Matile, S. Stack exchange strategies for the synthesis of covalent double-channel photosystems by self-organizing surface-initiated polymerization. Journal of the American Chemical Society. 133, 18542-18545 (2011).
  15. Uji, H., Morita, T., Kimura, S. Molecular direction dependence of single-molecule conductance of a helical peptide in molecular junction. Physical Chemistry Chemical Physics. 15, 757-760 (2013).
  16. Liang, C., Ni, R., Smith, J. E., Childers, W. S., Mehta, A. K., Lynn, D. G. Kinetic intermediates in amyloid assembly. Journal of the American Chemical Society. 136, 15116-15149 (2014).
  17. Smith, J. E., et al. Defining the dynamic conformational network of cross-β peptide assembly. Israel Journal of Chemistry. 55, 763-769 (2015).
  18. Black, S. P., Sanders, J. K. M., Stefankiewicz, A. R. Disulfide exchange: Exposing supramolecular reactivity through dynamic covalent chemistry. Chemical Society Reviews. 43, 1861-1872 (2014).
  19. Vendetti, A., et al. Dihydroasparagusic acid: Antioxidant and tyrosinase inhibitory activities and improved synthesis. Journal of Agricultural and Food Chemistry. 61, 6848-6855 (2013).
  20. Stawikowski, M., Fields, G. B. Introduction to peptide synthesis. Current Protocols in Protein Science. 26, (2002).
  21. Canadell, J., Goossens, H., Klumperman, B. Self-healing materials based on disulfide links. Macromolecules. 44, 2536-2541 (2011).
  22. Lafont, U., van Zeijl, H., van der Zwaag, S. Influence of cross-linkers on the cohesive and adhesive self-healing ability of polydisulfide-based thermosets. ACS Applied Materials and Interfaces. 4, 6280-6288 (2012).
  23. Komaromy, D., Stuart, M. C. A., Santiago, G. M., Tezcan, M., Krasnikov, V. V., Otto, S. Self-assembly can direct dynamic covalent bond formation toward diversity or specificity. Journal of the American Chemical Society. 139, 6234-6241 (2017).
  24. McAvery, K. M., Guan, B., Fortier, C. A., Tarr, M. A., Cole, R. B. Laser-induced oxidation of cholesterol observed during MALDI-TOF mass spectrometry. Journal of the American Society for Mass Spectrometry. 22, 659-669 (2011).
  25. Krimm, S., Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry. 38, 181-364 (1986).
  26. Halverson, K. J., Sucholeiki, I., Ashburn, T. T., Lansbury, P. T. Location of β-sheet-forming sequences in amyloid proteins by FTIR. Journal of the American Chemical Society. 113, 6701-6703 (1991).
  27. Greenfield, N., Fasman, G. D. Computed circular dichroism spectra for the evaluation of protein confirmation. 生物化学. 8, 4108-4116 (1969).
  28. . ImageJ Available from: https://imagej.nih.gov/ij (2016)
  29. Roy, S., Shinde, S., Hamilton, G. A., Hartnett, H. E., Jones, A. K. Artificial [FeFe]-hydrogenase: On resin modification of an amino acid to anchor a hexacarbonyldiiron cluster in a peptide framework. European Journal of Inorganic Chemistry. 2011, 1050-1055 (2011).
  30. Van Duinen, S. G., Castano, E. M., Prelli, F., Bots, G. T. A. B., Luyendijk, W., Frangione, B. Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America. 84, 5991-5994 (1987).
  31. Barth, A. The infrared absorption of amino acid sidechains. Progress in Biophysics and Molecular Biology. 74, 141-173 (2000).
  32. Jayaraman, M., et al. Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing Huntingtin fragments. Journal of Molecular Biology. 415, 881-899 (2012).

Play Video

Cite This Article
Neves, R., Stephens, K., Smith-Carpenter, J. E. Synthesis and Characterization of 1,2-Dithiolane Modified Self-Assembling Peptides. J. Vis. Exp. (138), e58135, doi:10.3791/58135 (2018).

View Video