Summary

1, 2-ジチオランの合成とキャラクタリゼーション自己組織化ペプチド

Published: August 20, 2018
doi:

Summary

1, 2-ジチオランの合成のためのプロトコルは、ペプチドやペプチドの自己集合結果超分子構造の評価に変更されました。

Abstract

本報告では N 末端の 1, 2-ジチオランの合成に焦点を当てて自己組織化ペプチドとその結果の評価を変更された自己組織化超分子構造。合成経路は、ジチオラン前駆体分子 3-(acetylthio)-2 の樹脂の結合の固相ペプチド合成の活用-(acetylthiomethyl) プロパン酸、およびマイクロ波を用いた thioacetate ペプチドの deprotection1, 2-ジチオランに屈する前に、ガレージから最終的な胸の谷間 N 末端ペプチドを変更しました。アルツハイマー病に関連付けられている a β ペプチドの核のコアから派生した、1, 2-ジチオラン ペプチドの高速液体クロマトグラフィー (HPLC) 精製後、ペプチドはクロス β アミロイド線維に自己組み立てるに表示されます。フーリエ変換赤外分光法 (FT-IR)、円二色性分光法 (CD) と透過型電子顕微鏡 (TEM) によるアミロイド繊維を特徴付けるためのプロトコルが表示されます。組立後変更戦略を開発し、動的共有結合化学を探索するモデル系として、よ特徴付けられた自己組織化ペプチドを 1, 2-ジチオラン構造 N 末端修飾の方法を検討今することができます。超分子のペプチド ナノファイバーの表面。

Introduction

固相ペプチド合成に関与する堅牢なペプチド結合の化学を形成し、シーケンスの長さと構成を制御する機能、超分子構造に重く研究フィールドをまとめる自己ペプチド。制御し、側鎖の立体を含むペプチドの自己組織化構造と静電相互作用、水素結合、疎水性効果1、安定の要因はデザイン ルールのセットとして機能します。これらの基本的な設計ルールに研究が進み、ペプチドの論理の次の手順では自己ペプチド ベースの構造と機能の多様性を拡大して含まれます。自己組織化ペプチドがペプチド シーケンスまたはアセンブリ条件2,3,4のための戦略の開発をチューニングすることによって多くの医用に使用されている汎用性の高い生体材料ペプチド ナノファイバー5,6,7,8,9組立後変更のまま比較的未踏の領域です。

動的ジスルフィド交換とチオール化学超分子構造体の表面では、機能的な新しい生体材料をもたらす可能性がある 1 つの領域です。1, 2-ジチオラン鎖 (一般的リポ酸 (la) やアスパラガス酸 (aa) の派生物) の設立がリポソーム システム1011ブロック共重合体12,13と報告されています。表面14,15でアンカーを整理します。ここで、合成と 1, 2-ジチオラン機能グループ16、N 末端修飾アルツハイマー病に関連付けられている a β ペプチドの核のコアから派生した自己組織化ペプチドの特性を報告します。 17。結果として得られる分子繊維は今アミロイド繊維18の超分子表面にチオール、ジスルフィド交換反応性を研究する実験的プラットフォームとして機能します。

Protocol

1. 1, 2-ジチオランの合成・精製ペプチドを変更 ジチオラン前駆体、3-(acetylthio)-2 の合成-(acetylthiomethyl) プロパン酸19。 3 の 1 グラムを追加-ブロモ – 2-(ブロモメチル) プロピオン酸 (1 当量) 最小限の 55 ° C で攪拌しながら 25 mL 丸底反応フラスコに 1 M 水酸化ナトリウム (約 4 mL) に溶解隔壁を有する反応フラスコを密封し、窒素雰囲気下で配置します。…

Representative Results

ジチオラン前駆体分子の初期段階合成、脇から 1, 2-ジチオラン変更ペプチド合成の残りの部分は、固体支持体 (図 1 a) で発生します。3 の変換-ブロモ – 2-(ブロモメチル) プロピオン酸 3-(acetylthio)-2- 1H (acetylthiomethyl) プロパン酸、ジチオラン前駆体を確認し、 13C の NMR (図 1 bとC) それの前に自由に?…

Discussion

この記事では、両方の合成の詳細は、N ターミナル 1, 2-ジチオラン修正の自己組織化ペプチドの精製と結果の超分子構造の性質をについて説明します。ここで報告される 1, 2-ジチオラン ペプチドの合成ジチオラン前駆体、3-(acetylthio)-2 を生成するワンステップ合成を含む利点があります-(acetylthiomethyl) プロパン酸と樹脂の電子レンジの脱保護反応、有毒なヒドラジンの脱保護する安全な代替案…

Disclosures

The authors have nothing to disclose.

Acknowledgements

著者博士 B. エレン Scanley をありがとう彼女の技術的なトレーニングと彼女の CD にアクセスするためのナノテク ・ ウェスリアン大学で博士中川ムカージについてコネチカット州立大学および大学 (CSCU) センターで TEM を使用してヘルプをしたいです。分光光度計。報告される作業は、フェア フィールド大学、NASA コネチカット宇宙グラント コンソーシアムの科学研究所、国立科学財団助成番号チェ-1624774 の下に一部サポートされていました。

Materials

Rink amide MBHA resin, high load Gyros Protein Technologies RAM-5-HL Avoid contact with skin and eyes; do not inhale
N,N-Dimethylformamide Fisher Scientific D119-4 Flammable liquid and vapor; irritating to eyes and skin; Use personal protective equipment; keep away from open flame
Fmoc-L-Val-OH Gyros Protein Technologies FLA-25-V Wear personal protective equipment; do not inhale
Fmoc-L-Leu-OH Gyros Protein Technologies FLA-25-L Wear personal protective equipment; do not inhale
Fmoc-L-Lys(Boc)-OH Gyros Protein Technologies FLA-25-KBC Wear personal protective equipment; do not inhale
Fmoc-L-Phe-OH Gyros Protein Technologies FLA-25-F Wear personal protective equipment; do not inhale
Fmoc-L-Ala-OH Gyros Protein Technologies FLA-25-A Wear personal protective equipment; do not inhale
Fmoc-L-Gln(Trt)-OH Gyros Protein Technologies FLA-25-QT Wear personal protective equipment; do not inhale
N,N,N′,N′-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate Gyros Protein Technologies 26432 Causes skin, eye and respiratory irritation; do not inhale; use under hood or in well ventilated area
0.4 M N-methylmorpholine in DMF Gyros Protein Technologies PS3-MM-L highly flammable; wear personal protective equipment; keep away from heat and keep container tightly closed; do not inhale or swallow; wash skin thoroughly after handling
20% piperidine in DMF Gyros Protein Technologies PS3-PPR-L Causes severe eye and skin burns; Flammable Liquid and vapor; Do not inhale
dichloromethane Fisher Scientific D37-4 May cause cancer; Do not inhale; Wear personal protective equipment; use under hood only; if contacted rise with water for at least 15 minutes and obtain medical attention
acetonitrile Fisher Scientific A998-4 Flammable; irritating to eyes; Use personal protective equipment; Use only under a fume hood; keep away from open flame or hot surface; if contacted rinse wiith water for at least 15 minutes and obtain medical attention
trifluoroacetic acid Fisher Scientific A116-50 Causes severe burns; do not inhale; harmful to aquatic life; use personal protective equipment; use only under fume hood; if contacted rinse with water for at least 15 minutes and obain immediate medical attention
4% uranyl acetate Electron Microscopy Sciences 22400-4 Do not inhale; harmful to aquatic life
4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid Acros Organics AC172571000 Do not inhale; use outdoors or in well-ventilated area
nitrogen Gas TechAir Contents under pressure, may explode if heated
3-bromo-2-(bromomethyl)propionic acid Alfa Aesar AAA1963014 Do not inhale; causes irritation to skin and eyes; corrosive
sodium hydroxide Fisher Scientific S318-100 Use personal protective equipment; use only under fume hood; if contact rinse area for at least 15 minutes and obtain medical attention
potassium thioacetate Acros Organics AC221300250 Causes skin and eye irritation; do not inhale; use personal protective equipment
sulfuric acid Fisher Scientific SA213 Causes burns; keep away from water; keep away from combustible material; do not inhale; use personal protective equipment; if contact rinse area for at least 15 minutes and obtain medical attention
chloroform-d Acros Organics AC320690075 Possible cancer hazard; irritating to skin and eyes; do not inhale; Use personal protective equipment; use only under fume hood; If contact rinse area for at least 15 minutes and obtain medical attention
chloroform Fisher Scientific C298-4 Possible cancer hazard; irritating to skin and eyes; do not inhale; Use personal protective equipment; use only under fume hood; If contact rinse area for at least 15 minutes and obtain medical attention
N,N-diisopropylethylamine Acros Organics AC367841000 Highly flammable; harmful to aquatic life; wear personal protective equipment; do not swallow
ammonium hydroxide Fisher Scientific A669S-500 Corrosive; do not inhale
methanol Fisher Scientific A452-4 Flammable liquid and vapor; use personal protective equipment; do not inhale; If contact rinse area for at least 15 minutes and obtain medical attention
triisopropylsilane Sigma Aldrich 233781 Flammable; use personal proctective safety equipment; keep container tightly closed
diethyl ether Fisher Scientific E138-1 Extremely flammable; Irritating to skin and eyes; Use personal protective equipment
2,5-dihydroxybenzoic acid Sigma Aldrich 39319-10x10MG-F do not inhale; irritating to skin and eyes
alpha-cyano-4-hydroxycinnamic acid Alfa Aesar AAJ67635EXK
c18 zip-tip Millipore ZTC18S096
tris(2-carboxyethyl) phospine hydrochloride Thermo Scientific PI20490
silica gel 60 F254 coated aluminum-backed TLC sheets EMD Millipore 1.05549.0001
Thin walled Precision NMR tubes Bel-Art 663000585 5mm O.D.
All-plastic Norm-Ject syringes Air Tite AL10
single-use needle BD PrecisionGlide BD 305185 used needles get disposed on in sharps waste container
disposable fritted syringe Torviq SF1000LL 10mL fritted syringes were used in the report, but larger syringes are avaibale if needed for larger scale synthesis.
carbon grid Ted Pella, Inc. CF200-CU Make sure to prepare samples and staining on the carbon grid side, not the shiny copper side of grid
self-closing tweezers Electron Microscopy Sciences 78318-3X very sharp tips, length: 120 mm
0.1 mm short path length cell Starna Cells, Inc. 20/C-Q-0.1 Fragile
10mL Vessel Caps CEM 909210
10mL Pressure Vessels CEM 908035
Aeris Semi-Prep HPLC column Phenomenex 00F-4632-N0 150 x 10mm
cell holder Starna Cells, Inc. CH-2049 Needed when using short pathlength cells
PS3 peptide synthesizer Gyros Protein Technologies
DiscoverSP Microwave Reactor CEM
centrifuge HERMLE Z 206 A used a fixed 6×50 mL rotor
HPLC Shimadzu UV Detector
nuclear magnetic resonance spectrometer Avance, Bruker 300 MHz
MALDI-TOF mass spectrometer Axima Confidence, Shimadzu
lyophilizer Millrock Technology BT85A
Fourier-Transform Infrared Spectrometer Alpha Tensor, Bruker
Transmission Electron Microscope Tecnai Spirit, FEI Used with Gatan Orius Fiberoptic CCD digital camera. Accessed at CSCU Center for Nanotechnology
Circular Dichroism Spectropolarimeter J-810, JASCO Used with a six-cell Peltier temperature controller. Accessed at Wesleyan University.

References

  1. Wang, J., Liu, K., Xing, R., Yan, X. Peptide self-assembly: Thermodynamics and kinetics. Chemical Society Reviews. 45, 5589-5604 (2016).
  2. Dong, R., et al. Functional supramolecular polymers for biomedical applications. Advanced Materials. 27, 498-526 (2015).
  3. Edwards-Gayle, C. J. C., Hamley, I. W. Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Organic and Biomolecular Chemistry. 15, 5867-5876 (2017).
  4. Goor, O. J. G. M., Hendrikse, S. I. S., Dankers, P. Y. W., Meijer, E. W. From supramolecular polymers to multi-component biomaterials. Chemical Society Reviews. 46, 6621-6637 (2017).
  5. DiMaio, J. T. M., Doran, T. M., Ryan, D. M., Raymond, D. M., Nilsson, B. L. Modulating supramolecular peptide hydrogel viscoelasticity using biomolecular recognition. Biomacromolecules. 18, 3591-3599 (2017).
  6. DiMaio, J. T. M., Raymond, D. M., Nilsson, B. L. Display of functional proteins on supramolecular peptide nanofibrils using a split-protein strategy. Organic and Biomolecular Chemistry. 15, 5279-5283 (2017).
  7. Mahmoud, Z. N., Gunnoo, S. B., Thomson, A. R., Fletcher, J. M., Woolfson, D. N. Bioorthogonal dual functionalization of self-assembling peptide fibers. Biomaterials. 32, 3712-3720 (2011).
  8. Petkau-Milroy, K., Uhlenheuer, D. A., Spiering, A. J. H., Vekemans, J. A. J. M., Brunsveld, L. Dynamic and bio-orthogonal protein assembly along a supramolecular polymer. Chemical Science. 4, 2886-2891 (2013).
  9. Li, A., et al. Neurofibrillar tangle surrogates: Histone H1 binding to patterned phosphotyrosine peptide nanotubes. 生物化学. 53, 4225-4227 (2014).
  10. Sadownik, A., Stefely, J., Regen, S. L. Polymerized liposomes formed under extremely mild conditions. Journal of the American Chemical Society. 108, 7789-7791 (1986).
  11. Zhang, N., et al. ATN-161 Peptide functionalized reversibly cross-linked polymersomes mediate targeted doxorubicin delivery into melanoma-bearing C57BL/6 mice. Molecular Pharmaceutics. 14, 2538-2547 (2017).
  12. Margulis, K., et al. Formation of polymeric nanocubes by self-assembly and crystallization of dithiolane-containing triblock copolymers. Angewandte Chemie International Edition. 56, 16357-16362 (2017).
  13. Zhang, X., Waymouth, R. 1,2-Dithiolane-Derived Dynamic, Covalent Materials: Cooperative Self-Assembly and Reversible Cross-Linking. Journal of the American Chemical Society. 139, 3822-3833 (2017).
  14. Sakia, N., Matile, S. Stack exchange strategies for the synthesis of covalent double-channel photosystems by self-organizing surface-initiated polymerization. Journal of the American Chemical Society. 133, 18542-18545 (2011).
  15. Uji, H., Morita, T., Kimura, S. Molecular direction dependence of single-molecule conductance of a helical peptide in molecular junction. Physical Chemistry Chemical Physics. 15, 757-760 (2013).
  16. Liang, C., Ni, R., Smith, J. E., Childers, W. S., Mehta, A. K., Lynn, D. G. Kinetic intermediates in amyloid assembly. Journal of the American Chemical Society. 136, 15116-15149 (2014).
  17. Smith, J. E., et al. Defining the dynamic conformational network of cross-β peptide assembly. Israel Journal of Chemistry. 55, 763-769 (2015).
  18. Black, S. P., Sanders, J. K. M., Stefankiewicz, A. R. Disulfide exchange: Exposing supramolecular reactivity through dynamic covalent chemistry. Chemical Society Reviews. 43, 1861-1872 (2014).
  19. Vendetti, A., et al. Dihydroasparagusic acid: Antioxidant and tyrosinase inhibitory activities and improved synthesis. Journal of Agricultural and Food Chemistry. 61, 6848-6855 (2013).
  20. Stawikowski, M., Fields, G. B. Introduction to peptide synthesis. Current Protocols in Protein Science. 26, (2002).
  21. Canadell, J., Goossens, H., Klumperman, B. Self-healing materials based on disulfide links. Macromolecules. 44, 2536-2541 (2011).
  22. Lafont, U., van Zeijl, H., van der Zwaag, S. Influence of cross-linkers on the cohesive and adhesive self-healing ability of polydisulfide-based thermosets. ACS Applied Materials and Interfaces. 4, 6280-6288 (2012).
  23. Komaromy, D., Stuart, M. C. A., Santiago, G. M., Tezcan, M., Krasnikov, V. V., Otto, S. Self-assembly can direct dynamic covalent bond formation toward diversity or specificity. Journal of the American Chemical Society. 139, 6234-6241 (2017).
  24. McAvery, K. M., Guan, B., Fortier, C. A., Tarr, M. A., Cole, R. B. Laser-induced oxidation of cholesterol observed during MALDI-TOF mass spectrometry. Journal of the American Society for Mass Spectrometry. 22, 659-669 (2011).
  25. Krimm, S., Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry. 38, 181-364 (1986).
  26. Halverson, K. J., Sucholeiki, I., Ashburn, T. T., Lansbury, P. T. Location of β-sheet-forming sequences in amyloid proteins by FTIR. Journal of the American Chemical Society. 113, 6701-6703 (1991).
  27. Greenfield, N., Fasman, G. D. Computed circular dichroism spectra for the evaluation of protein confirmation. 生物化学. 8, 4108-4116 (1969).
  28. . ImageJ Available from: https://imagej.nih.gov/ij (2016)
  29. Roy, S., Shinde, S., Hamilton, G. A., Hartnett, H. E., Jones, A. K. Artificial [FeFe]-hydrogenase: On resin modification of an amino acid to anchor a hexacarbonyldiiron cluster in a peptide framework. European Journal of Inorganic Chemistry. 2011, 1050-1055 (2011).
  30. Van Duinen, S. G., Castano, E. M., Prelli, F., Bots, G. T. A. B., Luyendijk, W., Frangione, B. Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America. 84, 5991-5994 (1987).
  31. Barth, A. The infrared absorption of amino acid sidechains. Progress in Biophysics and Molecular Biology. 74, 141-173 (2000).
  32. Jayaraman, M., et al. Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing Huntingtin fragments. Journal of Molecular Biology. 415, 881-899 (2012).
check_url/cn/58135?article_type=t

Play Video

Cite This Article
Neves, R., Stephens, K., Smith-Carpenter, J. E. Synthesis and Characterization of 1,2-Dithiolane Modified Self-Assembling Peptides. J. Vis. Exp. (138), e58135, doi:10.3791/58135 (2018).

View Video