Summary

免疫荧光染色,用于 在果蝇 唾液腺中可视化异色素相关蛋白质

Published: August 21, 2021
doi:

Summary

此协议旨在可视化 多聚 体细胞中的异色素聚合物。

Abstract

通过免疫染色来可视化异色素聚合物可能具有挑战性。许多哺乳动物的染色质成分在 果蝇黑色素加斯特保存。 因此,研究异色素的形成和维护是一个很好的模型聚合细胞,如在第三星 D.黑色素幼 虫的唾液腺中发现的细胞,提供了观察血红素放大近千次的绝佳工具,并使研究人员能够研究异色素在细胞核中分布的变化。虽然异色素成分的观察可以直接在多极染色体制剂中进行,但某些蛋白质的定位可以通过治疗的严重程度来改变。因此,细胞中异色素的直接可视化补充了这种类型的研究。在此协议中,我们描述了用于此组织的免疫染色技术、使用二次荧光抗体和连续显微镜以更精确和更精细的方式观察这些异色素聚合物。

Introduction

自早期研究Emil Heitz1以来,异色素一直被认为是细胞过程的重要调节器,如基因表达、染色体的美色和间质分离,以及维持基因组稳定性2、3、4。

异色素主要分为两种类型:具有特征定义重复序列的构成异色素,以及存在于特定染色体位点(如端粒和中位体)中的可转换元素。这种类型的异色素主要通过特定的平生标记,如赖氨酸9的地基或三甲基化的希石H3(H3K9me3)和异色素蛋白1a(HP1a)5,6的结合来表观遗传。另一方面,通过染色体的手臂,由发育沉默的基因7,8组成。代谢细胞中异色素块的免疫染色,或相间细胞中异色素聚合物的观察,在了解异色区形成和功能方面,揭示了许多光。

使用卓索菲拉作为模型系统,使得开发必要的工具,研究异色素,而无需使用电子显微镜10。由于位置效应变异的描述和异色素相关蛋白质(如HP1a)和组蛋白后转化改性蛋白的发现,许多小组已经开发出几种免疫造血技术,允许这些异色区域的可视化10,11。

这些技术基于特定抗体的使用,这些抗体能够识别异色素相关蛋白质或希石标记。对于每个细胞类型和抗体,必须经验确定固定和渗透条件。此外,如果使用额外的机械过程(如挤压技术),条件可能会有所不同。在这个协议中,我们描述了使用果蝇唾液腺来研究异色病。唾液腺具有多聚化细胞,包含超过1000份基因组,因此提供了大部分染色质特征的放大视图,除了卫星DNA和一些被复制的异色区域。然而,异色素区域很容易在多极染色体制剂中可视化,但挤压技术有时可能会破坏典型的染色质结合复合物或染色质结构。因此,整个唾液腺组织中蛋白质的免疫定位可以超越这些不良反应。我们使用这个协议来检测几个染色质结合蛋白,我们已经证明,这个协议结合突变的果蝇种群可用于研究异色素干扰12。

Protocol

1. 第三星幼虫培养 加入100克酵母、100克未精制的全甘蔗糖、16克琼脂、10mL丙烯酸和14克明胶,准备1升标准介质。将除酵母以外的所有成分溶解在 800 mL 的自来水中,然后溶解酵母。高压灭菌立即30分钟。 之后,让媒体冷却到60°C,并将丙酸添加到最终浓度0.01%。让瓶子站立,直到明胶形成。 为了优化3o星内幼虫培养,首先收集5至10天的老年人,并将50(25男25女)放在?…

Representative Results

图1显示,在果蝇唾液腺中,HP1a免疫染色具有代表性。 一个积极的结果是观察一个焦点(图1a)(异色聚合物或凝结物)。负结果为无信号或分散信号。有时可以观察到双重信号,即双点(图1c),但它通常发生的数量较小。 数据分析可以表示为条形图,比较不同突变背景中 HP1a 的分布。例如,在 <stron…

Discussion

真核生物的细胞功能可以定义细胞核内的3D结构,由不同蛋白质与染色质和包括RNA在内的各种分子之间的相互作用得到支持。在过去三年中,具有相关性的生物凝结物,包括异色素,在确定相分离方面发挥了根本作用,促进了活跃和抑制性色度素16、17、18的独特核空间组织。

异色素对于保持细胞功能和身?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢马可·安东尼奥·罗萨莱斯·维加和阿贝尔·塞古拉拍摄了一些焦点图像,卡门·穆尼奥斯为媒体准备,阿图罗·皮门特尔博士,M.C安德烈斯·萨拉莱吉博士和来自LMNA的克里斯·伍德博士就显微镜的使用提供建议。

Materials

1.5 mL microcentrifuge tubes Axygen MCT-150-C 11351904 brand not critical
16% formaldehyde Thermo Scientific 28908
AF1 Citifluor Ted pella 19470 25 mL
BSA, Molecular Biology Grade Roche 10735078001 brand not critical
Complete, protease inhibitors Ultra EDTA-free
protease inhibitors
Merck 5892953001
Coverslip Corning CLS285022-200EA 22×22, brand not critical
DTT Sigma d9779 brand not critical
EDTA Sigma E5134 brand not critical
EGTA brand not critical
Glass slide Gold seal 3011 brand not critical
H3BO3 Baker 0084-01 brand not critical
H3K9me3 Abcam 8889
HP1a Hybridoma Bank C1A9 Product Form Concentrate 0.1 mL
KCl Baker 3040-01 brand not critical
Methanol Baker 9070-03 brand not critical
NaCl Sigma 71376 brand not critical
NaOH brand not critical
PIPES brand not critical
Rotator Thermo Scientific 13-687-12Q  Labquake Tube Shaker
Thermo Mixer C Eppendorf 13527550 SmartBlock 1.5 mL
Tris Milipore 648311 brand not critical
Triton X-100 Sigma T8787 100 mL, brand not critical
β-mercaptoethanol Bio-Rad 1610710 25 mL, brand not critical

References

  1. Berger, F. Emil Heitz, a true epigenetics pioneer. Nature Reviews Molecular Cell Biology. 20 (10), 572 (2019).
  2. Irick, H. A new function for heterochromatin. Chromosoma. 103 (1), 1-3 (1994).
  3. Kasinathan, B., et al. Innovation of heterochromatin functions drives rapid evolution of essential ZAD-ZNF genes in Drosophila. Elife. , 1-31 (2020).
  4. Lifschytz, E., Hareven, D. Heterochromatin markers: Arrangement of obligatory heterochromatin, histone genes and multisite gene families in the interphase nucleus of D. melanogaster. Chromosoma. 86 (4), 443-455 (1982).
  5. Eissenberg, J. C., Elgin, S. C. R. HP1a: A structural chromosomal protein regulating transcription. Trends in Genetics. 30 (3), 103-110 (2014).
  6. Lee, Y. C. G., et al. Pericentromeric heterochromatin is hierarchically organized and spatially contacts H3K9me2 islands in euchromatin. PLoS Genetics. 16 (3), 1-27 (2020).
  7. Koryakov, D. E., et al. The SUUR protein is involved in binding of SU (VAR)3-9 and methylation of H3K9 and H3K27 in chromosomes of Drosophila melanogaster. Chromosome Research. 19 (2), 235-249 (2011).
  8. Cao, R., et al. Role of Histone H3 Lysine 27 Methylation in Polycomb-Group Silencing. Science. 298 (5595), 1039 (2002).
  9. Hines, K. A., et al. Domains of heterochromatin protein 1 required for Drosophila melanogaster heterochromatin spreading. 遗传学. 182 (4), 967-977 (2009).
  10. Elgin, S. C. R., Reuter, G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harbor Perspectives in Biology. 5 (8), 1-26 (2013).
  11. Eissenberg, J. C., Elgin, S. C. R. HP1a: A structural chromosomal protein regulating transcription. Trends in Genetics. 30 (3), 103-110 (2014).
  12. Meyer-Nava, S., Torres, A., Zurita, M., Valadez-graham, V. Molecular effects of dADD1 misexpression in chromatin organization and transcription. BMC Molecular and Cell Biology. 2, 1-17 (2020).
  13. Tennessen, J. M., Thummel, C. S. Coordinating growth and maturation – Insights from drosophila. Current Biology. 21 (18), 750-757 (2011).
  14. Cai, W., Jin, Y., Girton, J., Johansen, J., Johansen, K. M. Preparation of drosophila polytene chromosome squashes for antibody labeling. Journal of Visualized Experiments. (36), 1-4 (2010).
  15. Bainbridge, S. P., Bownes, M. Staging the metamorphosis of Drosophila melanogaster. Journal of Embryology and Experimental Morphology. 66 (1967), 57-80 (1981).
  16. Larson, A. G., et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature. 547 (7662), 236-240 (2017).
  17. Larson, A. G., Narlikar, G. J. The Role of Phase Separation in Heterochromatin Formation, Function, and Regulation. 生物化学. 57 (17), 2540-2548 (2018).
  18. Keenen, M. M., Larson, A. G., Narlikar, G. J. Visualization and Quantitation of Phase-Separated Droplet Formation by Human HP1α. Methods in Enzymology. , (2018).
  19. Lu, B. Y., Emtage, P. C., Duyf, B. J., Hilliker, a. J., Eissenberg, J. C. Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. 遗传学. 155 (2), 699-708 (2000).
  20. Marsano, R. M., Giordano, E., Messina, G., Dimitri, P. A New Portrait of Constitutive Heterochromatin: Lessons from Drosophila melanogaster. Trends in Genetics. , (2019).
  21. Strom, A. R., et al. Phase separation drives heterochromatin domain formation. Nature. 547 (7662), 241-245 (2017).
  22. Sanulli, S., et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature. 575 (7782), 390-394 (2019).
  23. Dialynas, G., Delabaere, L., Chiolo, I. Arp2/3 and Unc45 maintain heterochromatin stability in Drosophila polytene chromosomes. Experimental Biology and Medicine. 244 (15), 1362-1371 (2019).
  24. Kolesnikova, T. D., et al. Induced decondensation of heterochromatin in drosophila melanogaster polytene chromosomes under condition of ectopic expression of the supressor of underreplication gene. Fly. 5 (3), 181-190 (2011).
  25. Bettinger, J. C., Lee, K., Rougvie, A. E. Stage-specific accumulation of the terminal differentiation factor LIN-29 during Caenorhabditis elegans development. Development. 122 (8), 2517-2527 (1996).
  26. Messina, G., et al. Yeti, an essential Drosophila melanogaster gene, encodes a protein required for chromatin organization. Journal of Cell Science. 127 (11), 2577-2588 (2014).
  27. Aguilar-Fuentes, J., et al. p8/TTDA overexpression enhances UV-irradiation resistance and suppresses TFIIH mutations in a Drosophila trichothiodystrophy model. PLOS Genetics. 4 (11), 1-9 (2008).
  28. Reynaud, E., Lomeli, H., Vazquez, M., Zurita, M. The Drosophila melanogaster Homologue of the Xeroderma Pigmentosum D Gene Product Is Located in Euchromatic Regions and Has a Dynamic Response to UV Light-induced Lesions in Polytene Chromosomes. Molecular Biology of the Cell. 10 (4), 1191-1203 (1999).
  29. Farkaš, R., Mechler, B. M. The timing of Drosophila salivary gland apoptosis displays an I (2)gl-dose response. Cell Death & Differentiation. 7 (1), 89-101 (2000).
  30. Zhang, P., Spradling, A. C. The Drosophila salivary gland chromocenter contains highly polytenized subdomains of mitotic heterochromatin. 遗传学. 139 (2), 659-670 (1995).
  31. Stormo, B. M., Fox, D. T. Polyteny: still a giant player in chromosome research. Chromosome Research. 25 (3-4), 201-214 (2017).
check_url/cn/62408?article_type=t

Play Video

Cite This Article
Meyer-Nava, S., Zurita, M., Valadez-Graham, V. Immunofluorescent Staining for Visualization of Heterochromatin Associated Proteins in Drosophila Salivary Glands. J. Vis. Exp. (174), e62408, doi:10.3791/62408 (2021).

View Video