Summary

使用接近-连接-测定法对不同流体剪切应力条件下TGFβ/BMP/SMAD信号传导的可视化和定量

Published: September 14, 2021
doi:

Summary

在这里,我们建立了一个方案,使用暴露于病理和生理流体剪切应激条件下的内皮细胞中的接近连接测定(PLA)同时可视化和分析多个SMAD复合物。

Abstract

转化生长因子β(TGFβ)/骨形态发生蛋白(BMP)信号传导在脉管系统的发展和稳态期间受到严格调节和平衡因此,该信号通路中的失调导致严重的血管病变,例如肺动脉高血压,遗传性出血性毛细血管扩张症和动脉粥样硬化。内皮细胞(EC)作为血管的最内层,不断暴露于液体剪切应激(SS)。液体SS的异常模式已被证明可以增强TGFβ / BMP信号传导,其与其他刺激一起诱导动脉粥样硬化发生。与此相关,发现低层流SS的动脉粥样硬化素可以增强TGFβ / BMP信号传导,而动脉粥样硬化保护,高层流SS可以减少这种信号传导。为了有效地分析这些途径的激活,我们设计了一个工作流程,使用市售的气动泵系统和接近连接测定(PLA)研究在低层流SS和高层流SS条件下转录因子复合物的形成。

活性TGFβ / BMP信号传导需要形成由两个调节性SMAD(R-SMAD)组成的三聚体SMAD复合物;分别用于TGFβ和BMP信号传导的SMAD2 / 3和SMAD1 / 5 / 8,具有共同介质SMAD(co-SMAD;SMAD4)。使用PLA靶向三聚体SMAD复合物的不同亚基,即R-SMAD / co-SMAD或R-SMAD / R-SMAD,可以使用荧光显微镜定量和空间测量活性SMAD转录因子复合物的形成。

使用具有6个小平行通道的流动载玻片,可以串联连接,允许研究转录因子复合物的形成并包含必要的对照。

这里解释的工作流程可以很容易地适应针对SMADs与其他转录因子或转录因子复合物的接近性的研究,在不同的流体SS条件下。本文介绍的工作流程展示了一种快速有效的方法,可以从定量和空间上研究EC中的流体SS诱导的TGFβ / BMP信号传导。

Introduction

转化生长因子β(TGFβ)超家族的蛋白质是多效性细胞因子,具有多种成员,包括TGFβ,骨形态发生蛋白(BMP)和Activins12。配体结合诱导受体低聚物的形成,导致磷酸化,从而激活细胞质调节性SMAD(R-SMAD)。根据配体的亚家族,激活不同的R-SMAD12。虽然TGFβs和激活素主要诱导SMAD2 / 3的磷酸化,但BMP诱导SMAD1 / 5 / 8磷酸化。然而,越来越多的证据表明,BMPs和TGFβs/Activins也激活了各自其他亚家族的R-SMAD,其过程称为”横向信号传导”345678,并且存在由SMAD1 / 5和SMAD2 / 3组成的混合SMAD复合物,成员39.两个活化的R-SMAD随后与共同介质SMAD4形成三聚体复合物。然后,这些转录因子复合物能够易位到细胞核中并调节靶基因的转录。SMAD可以与各种不同的转录共激活剂和共抑制剂相互作用,从而导致调节靶基因的可能性多样化10。SMAD信号传导的放松管制对多种疾病都有严重影响。与此一致,不平衡的 TGFβ/BMP 信号传导可能导致严重的血管病变,例如肺动脉高压、遗传性出血性毛细血管扩张症或动脉粥样硬化311121314

内皮细胞(EC)形成血管的最内层,因此暴露于剪切应力(SS),这是由血液粘性流动施加的摩擦力。有趣的是,居住在脉管系统部分的EC暴露于高水平的均匀层流SS,保持稳态和静止状态。相反,经历低、不均匀 SS 的 EC(例如,在主动脉弓的分叉或较小曲率处)会增殖并激活炎症通路15。反过来,功能失调的EC的部位容易发生动脉粥样硬化。有趣的是,这些动脉粥样硬化区域中的EC显示出异常高水平的激活SMAD2 / 3和SMAD1 / 5161718。在这种情况下,发现增强的TGFβ / BMP信号传导是动脉粥样硬化病变发展的早期事件19 ,并且发现对BMP信号传导的干扰可显着减少血管炎症,动脉粥样硬化形成和相关钙化20

邻近连接测定(PLA)是一种原位研究蛋白质 – 蛋白质相互作用生化技术2122。它依赖于可以结合目标蛋白的不同物种抗体的特异性,从而允许在单细胞水平上高度特异性地检测内源性蛋白质相互作用。在这里,一抗必须在小于40nm的距离内与其靶表位结合,以允许检测23。因此,PLA与传统的共免疫沉淀方法相比非常有益,因为传统共免疫沉淀方法需要数百万个细胞来检测内源性蛋白质相互作用。在PLA中,物种特异性二抗与DNA片段共价连接(称为加号和减号探针),与一抗结合,如果感兴趣的蛋白质相互作用,加号和减号探针非常接近。DNA在下一步中结扎,并且使环状DNA的滚动圆扩增成为可能。在扩增过程中,荧光标记的互补寡核苷酸与合成的DNA结合,允许通过常规荧光显微镜观察这些蛋白质相互作用。

这里描述的方案使科学家能够使用PLA定量比较体 动脉粥样硬化保护和阿瑟罗普酮SS条件下活性SMAD转录复合物的数量。SS通过可编程气动泵系统产生,该系统能够产生定义水平的层流单向流量,并允许逐步增加流速。该方法允许检测SMAD1 / 5或SMAD2 / 3与SMAD4之间的相互作用,以及混合R-SMAD复合物。它可以很容易地扩展到分析SMAD与转录共调节因子的相互作用或SMAD以外的转录因子复合物。 图 1 显示了下面显示的协议的主要步骤。

Figure 1
图1:所描述的协议的示意图。 A)接种在6通道载玻片中的细胞暴露于气动泵系统的剪切应力。(B)固定电池用于PLA实验或用于对照条件。(C)使用荧光显微镜获取PLA实验的图像,并使用ImageJ分析软件进行分析。 请点击此处查看此图的放大版本。

Protocol

1. 细胞培养和流体剪切应力暴露 注:以人脐静脉EC(HUVECs)为例研究SS诱导的SMAD相互作用。下面描述的方案可以应用于每种SS响应细胞类型。 在37°C下用0.1%猪皮明胶在PBS中涂覆6通道载玻片30分钟。 在预包被的6通道载玻片中以每mL2.5×10 6 个细胞的密度在30μL M199全培养基中接种HUVECs。注:有关如何在流动载玻片中播种细胞的更多信息,请参见参考文献<…

Representative Results

我们之前使用PLA来检测不同SMAD蛋白3 的相互作用,并分析了剪切应力引起的SMAD磷酸化变化28。 在这里,这两种方法都与上述协议相结合。将HUVECs置于1 dyn/cm2 和30 dyn/cm2 的剪切应力下,并分析SMAD转录因子的相互作用。我们表明,与高剪切应力(30 dyn / cm2)相比,低剪切应力(1 dyn / cm2)导致SMAD1-SMAD2 / 3相互作…

Discussion

这里描述的基于PLA的方案提供了一种有效的方法来确定暴露于剪切应力的EC中两种蛋白质的接近度(例如,它们的直接相互作用),具有定量和空间分辨率。通过使用具有多个平行通道的流动载玻片,可以在相同的机械条件下同时在细胞中检查几种不同的蛋白质相互作用。相比之下,定制的流室系统通常使用围绕玻璃盖玻片构建的单通道,这将只允许一个PLA实验,而无需每个滑块和泵的必要控制?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢 Maria Reichenbach 博士和 Christian Hiepen 博士对流程设置系统的支持,并感谢 Eleanor Fox 和 Yunyun Xiao 对手稿的批判性阅读。P-L.M.由国际马克斯普朗克研究学院IMPRS-Biology and Computing(IMPRS-BAC)资助。PK获得了DFG-SFB1444的资助。图 1 是使用 BioRender 创建的。

Materials

µ-Slide VI 0.4 ibidi 80606 6-channel slide
Ammonium Chloride Carl Roth K298.1 Quenching
Bovine Serum Albumin Carl Roth 8076.4 Blocking
DAPI Sigma Aldrich/ Merck D9542 Stain DNA/Nuclei
DPBS PAN Biotech P04-53500 PBS
Duolink In Situ Detection Reagents Green Sigma Aldrich/ Merck DUO92014 PLA kit containing Ligase, ligation buffer, polymerase and amplification buffer (with green labeled oligonucleotides)
Duolink In Situ PLA Probe Anti-Mouse MINUS Sigma Aldrich/ Merck DUO92004 MINUS probe
Duolink In Situ PLA Probe Anti-Rabbit PLUS Sigma Aldrich/ Merck DUO92002 PLUS probe
Duolink In Situ Wash Buffers, Fluorescence Sigma Aldrich/ Merck DUO82049 PLA wash buffers A and B
Endothelial Cell Growth Supplement Corning supplement for medium (ECGS)
Fetal calf Serum supplement for medium
FIJI Image Analysis software
Formaldehyde solution 4% buffered KLINIPATH/VWR VWRK4186.BO1 PFA
Full medium M199 basal medium +20 % FCS +1 % P/S + 2 nM L-Glu +  25 µg/mL Hep +   50 µg/mL ECGS
Gelatin from porcine skin, Type A Sigma Aldrich G2500 Use 0.1% in PBS for coating of flow channels
GraphPad Prism v.7 GarphPad Statistical Program used for the Plots and statistical calculations
Heparin sodium salt from porcine intestinal mucosa Sigma Aldrich H4784-250MG supplement for medium (Hep)
HUVECs
ibidi Mounting Medium ibidi 50001 Liquid mounting medium
ibidi Pump System ibidi 10902 pneumatic pump
Leica TCS SP8 Leica confocal microscope
L-Glutamin 200mM PAN Biotech P04-80100 supplement for medium (L-Glu)
Medium 199 Sigma Aldrich M2154 Base medium
mouse anti- SMAD1 Antibody Abcam ab53745 Suited for PLA
mouse anti- SMAD2/3 Antibody BD Bioscience 610843 Not suited for PLA in combination with CST 9515
mousee anti- SMAD4 Antibody Sanata Cruz Biotechnology sc-7966 Suited for PLA
Penicillin 10.000U/ml /Streptomycin 10mg/ml PAN Biotech P06-07100 supplement for medium (P/S)
Perfusion Set WHITE ibidi 10963 Tubings used for 1 dyn/cm2
Perfusion Set YELLOW and GREEN ibidi 10964 Tubings used for 30 dyn/cm2
rabbit anti- phospho SMAD1/5 Antibody Cell Signaling Technologies 9516 Suited for PLA
rabbit anti- SMAD2/3 XP Antibody Cell Signaling Technologies 8685 Suited for PLA
rabbit anti- SMAD4 Antibody Cell Signaling Technologies 9515 Not suited for PLA in combination with BD 610843
Serial Connector for µ-Slides ibidi 10830 serial connection tubes
Triton X-100 Carl Roth 6683.1 Permeabilization

References

  1. Yadin, D., Knaus, P., Mueller, T. D. Structural insights into BMP receptors: Specificity, activation and inhibition. Cytokine and Growth Factor Reviews. 27, 13-34 (2016).
  2. Sieber, C., Kopf, J., Hiepen, C., Knaus, P. Recent advances in BMP receptor signaling. Cytokine and Growth Factor Reviews. 20 (5-6), 343-355 (2009).
  3. Hiepen, C., et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biology. 17 (12), 3000557 (2019).
  4. Hildebrandt, S., et al. ActivinA induced SMAD1/5 Signaling in an iPSC derived EC model of Fibrodysplasia Ossificans Progressiva (FOP) can be rescued by the drug candidate saracatinib. Stem Cell Reviews and Reports. , (2021).
  5. Goumans, M. J., et al. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. The EMBO Journal. 21 (7), 1743-1753 (2002).
  6. Goumans, M. J., et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Molecular Cell. 12 (4), 817-828 (2003).
  7. Daly, A. C., Randall, R. A., Hill, C. S. Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Molecular and Cellular Biology. 28 (22), 6889-6902 (2008).
  8. Ramachandran, A., et al. TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. eLife. 7, 31756 (2018).
  9. Flanders, K. C., et al. Brightfield proximity ligation assay reveals both canonical and mixed transforming growth factor-β/bone morphogenetic protein Smad signaling complexes in tissue sections. The Journal of Histochemistry and Cytochemistry : The Official Journal of The Histochemistry Society. 62 (12), 846-863 (2014).
  10. Miyazono, K., Maeda, S., Imamura, T., Dijke, P. T., Heldin, C. -. H. . Smad Signal Transduction: Smads in Proliferation, Differentiation and Disease. , 277-293 (2006).
  11. Goumans, M. J., Zwijsen, A., Ten Dijke, P., Bailly, S. Bone morphogenetic proteins in vascular homeostasis and disease. Cold Spring Harbor Perspectives in Biology. 10 (2), 031989 (2018).
  12. Cai, J., Pardali, E., Sánchez-Duffhues, G., ten Dijke, P. BMP signaling in vascular diseases. FEBS Letters. 586 (14), 1993-2002 (2012).
  13. Cunha, S. I., Magnusson, P. U., Dejana, E., Lampugnani, M. G. Deregulated TGF-β/BMP signaling in vascular malformations. Circulation research. 121 (8), 981-999 (2017).
  14. MacCarrick, G., et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genetics in Medicine : An Official Journal of the American College of Medical Genetics. 16 (8), 576-587 (2014).
  15. Baeyens, N., Bandyopadhyay, C., Coon, B. G., Yun, S., Schwartz, M. A. Endothelial fluid shear stress sensing in vascular health and disease. The Journal of Clinical Investigation. 126 (3), 821-828 (2016).
  16. Min, E., et al. Activation of Smad 2/3 signaling by low shear stress mediates artery inward remodeling. bioRxiv. , 691980 (2019).
  17. Zhou, J., et al. BMP receptor-integrin interaction mediates responses of vascular endothelial Smad1/5 and proliferation to disturbed flow. Journal of Thrombosis and Haemostasis. 11 (4), 741-755 (2013).
  18. Zhou, J., et al. Force-specific activation of Smad1/5 regulates vascular endothelial cell cycle progression in response to disturbed flow. Proceedings of the National Academy of Sciences of the United States of America. 109 (20), 7770-7775 (2012).
  19. van Dijk, R. A., et al. Visualizing TGF-β and BMP signaling in human atherosclerosis: A histological evaluation based on Smad activation. Histology and Histopathology. 27 (3), 387-396 (2012).
  20. Derwall, M., et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 32 (3), 613-622 (2012).
  21. Fredriksson, S., et al. Protein detection using proximity-dependent DNA ligation assays. Nature Biotechnology. 20 (5), 473-477 (2002).
  22. Söderberg, O., et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nature Methods. 3 (12), 995-1000 (2006).
  23. Alam, M. S. Proximity Ligation Assay (PLA). Current Protocols in Immunology. 123 (1), 58 (2018).
  24. Application Note 03: Growing Cells in µ-Channels. ibidi Available from: https://ibidi.com/img/cms/support/AN/AN03_Growing_cells.pdf (2012)
  25. Application Note 13: HUVECs under perfusion. ibidi Available from: https://ibidi.com/img/cms/support/AN/AN13_HUVECs_under_perfusion.pdf (2019)
  26. ibidi. Application Note 31: Instructions µ-Slide VI 0.4. ibidi. , (2013).
  27. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  28. Reichenbach, M., et al. Differential impact of fluid shear stress and YAP/TAZ on BMP/TGF-β induced osteogenic target genes. Advanced Biology. 5 (2), 2000051 (2021).
  29. Hiepen, C., Mendez, P. L., Knaus, P. It takes two to tango: Endothelial TGFβ/BMP signaling crosstalk with mechanobiology. Cells. 9 (9), 1965 (2020).

Play Video

Cite This Article
Mendez, P., Obendorf, L., Knaus, P. Visualization and Quantification of TGFβ/BMP/SMAD Signaling under Different Fluid Shear Stress Conditions using Proximity-Ligation-Assay. J. Vis. Exp. (175), e62608, doi:10.3791/62608 (2021).

View Video