Summary

肠系膜动脉收缩和舒张的研究,使用自动线Myography

Published: September 22, 2011
doi:

Summary

一个孤立的肠系膜动脉的力测量的自动化myography方法描述。它采用一个Mulvany哈尔彭自动双丝肌动描记510A福林和钙,以确定响应。该方法允许等距反应一致,以激动剂决心在小血管的直径为60 – 300微米,独立。

Abstract

如肠系膜动脉的近端阻力血管,作出重大贡献的外周阻力。这些小血管的功能,主要是在指挥根据到身体的总体要求各个器官的血流量,直径100-400微米之间。大鼠肠系膜动脉的直径大于100微米的。贝文和奥谢尔2所提出的方法的基础上,首先 1 Mulvay和哈尔彭所描述的,是myography技术。该技术提供等距条件下,大幅缩短的肌肉准备阻止的小型船只的信息。由于力的生产和船只不同受体激动剂的敏感性依赖于伸展的程度,按照积极紧张长度关系,这是必不可少的等距条件下进行收缩的研究,以防止符合安装电线。不锈钢丝是首选,因为后者的氧化,从而影响记录反应3钨丝,该技术允许安装船只激动剂诱导的收缩比较,以获取证据表明血管平滑肌细胞受体的正常功能。

在几项研究中,我们已经表明phenylyephrine承包的,孤立的肠系膜动脉累积浓度的钙2 + E)除了放宽。结果导致我们得出结论,它表达的G蛋白偶联的Ca 2 +敏感受体(CAR),血管周围的感官神经,调解这个血管舒张反应。使用自动线myography方法,我们在这里展示,从只Wistar Dahl盐敏感(DS)和Dahl盐抵抗(DR)的肠系膜动脉的大鼠有不同的反应的Ca 2 + E 。从大鼠组织表现出更高的Ca 2 +敏感性相比,DR和DS。减少从DS大鼠肠系膜动脉车表达与减少的Ca 2 + E -诱导孤立的,承包前动脉松弛。数据表明,汽车是需要放宽增加肾上腺素基调下肠系膜动脉,在高血压发生,并表示在汽车的信号转导通路在达尔动物的固有缺陷,这是更为严重的DS。

肠系膜阻力动脉和类似的小血管和比较不同的受体激动剂和/或拮抗剂在确定血管反应性的体外的方法是有用的,可以很容易地和一贯的评估并排侧6,7,8。

Protocol

1。分离大鼠肠系膜小动脉麻醉与异氟醚在一个封闭的腔的动物,并用酒精擦拭腹部。 执行行剖腹探查术中暴露肠系膜床。 用剪刀,除去约85厘米的肠道喂养与肠系膜上动脉血管。切割近端肠道部分接近幽门和末端回肠coecal交界附近。部分小肠被隔离的大鼠,深感麻醉与异氟醚和开胸心脏穿刺安乐死。 涂层的培养皿含PSS的菜摆在切除部分和肠系膜上动脉,在室温下进?…

Discussion

高血压是心血管,脑和肾脏的发病率/死亡率的首要原因。高血压的发生是在人口高盐敏感性高血压是特别高,在人口老龄化,更多的黑人比白人流行。这被认为是由于对黑人的倾向保留在自己的肾脏 9钠。盐敏感性是肾脏疾病的一个主要因素,并与血管内皮功能障碍有关,但机制尚不完全清楚。在我们实验室最近的研究显示,高盐饮食可减少组织间液的Ca 2 +浓度([Ca2 2 <su…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

描述该项目奖号码R01 HL064761,R25 HL059868 1SC1 HL099139和P20 MD000175形式国立卫生研究院的支持。内容完全是作者的责任,并不一定代表国立卫生研究院的官方意见。

Materials

Name of equipment/ reagent Company Catalogue number Comments(optional)
Auto Dual Wire Myograph System-510A DMT-USA, Inc. Atlanta, GA. 100151  
PowerLab/4SP Data Acquisition System ADInstruments, Colorado Springs, CO. ML750 New models with 4-16 input channels are available.
Dell Dimension XPS Gen 4 Computer Dell    
Stemi SV II (Apo) Dissection Microscope with Ocular Carl Zeiss International.    
Wistar, Dahl salt-sensitive, Dahl salt-resistant rats Harlan Sprague Dawley, Indianapolis, IN.    
Rodent chow Harland Tekland, Madison, WI.    
Phenylephrine Sigma-Aldrich, St. Louis, MO.    
Other chemicals     All chemicals used were of the purest grades available commercially.

Referenzen

  1. Mulvany, M. J., Halpern, W. Mechanical properties of vascular smooth muscle cells in situ. Nature. 260, 617-619 (1976).
  2. Bevan, J. A., Osher, J. V. A direct method for recording tension changes in the wall of small blood vessels in vitro. Agents Actions. 2, 257-260 (1972).
  3. Mulvany, M. J. Procedures for investigating of small vessels using small vessel myograph. DMT Danish Myo Technology. , (2004).
  4. Angus, J. A., Wright, C. E. Techniques to study the pharmacodynamics of isolated large and small blood vessels. J. Pharmacol. Toxicol. Methods. 44, 395-407 (2000).
  5. Halpern, W., Mulvany, M. J., Warshaw, D. M. Mechanical properties of smooth muscle cells in the walls of arterial resistance vessels. J. Physiol. 275, 85-101 (1978).
  6. Lindhorst, J., Alexander, N., Blignaut, J., Rayner, B. Differences in hypertension between blacks and whites: an overview. Cardiovasc. J. Afr. 18, 241-247 (2007).
  7. Eley, S. L., Allen, C. M., Williams, C. L., Bukosi, R. D., Pointer, M. A. Action of thiazide on renal interstitial calcium. Am. J. Hypertens. 21, 814-819 (2008).
  8. Palmer, C. E., Rudd, M. A., Bujoski, R. D. Renal interstitial Ca2+ during sodium loading of normotensive and Dal-salt hypertensive rats. Am. J. Hypertens. 16, 771-776 (2003).
  9. Hurwitz, S. Homeostatic control of plasma calcium concentration. Crit. Rev. Biochem. Mol. Biol. 31, 41-100 (1996).
  10. Brown, E. M., MacLeod, R. J. Extracellular sensing and extracellular calcium signaling. Physiol. Rev. 81, 239-297 (2001).
  11. Breitwieser, G. E. Extracellular calcium as an integrator of tissue function. Int. J. Biochem. Cell Biol. 40, 1467-1480 (2008).
  12. Mupanomunda, M. M., Wang, Y., Bukoski, R. D. Effect of chronic sensory denervation on Ca2+-induced relaxation of isolated mesenteric resistance arteries. Am. J. Physiol. 274, 1655-1661 (1998).
  13. Mupanomunda, M. M., Ishioka, N., Bukoski, R. D. Interstitial Ca2+ undergoes dynamic changes sufficient to stimulate nerve-dependent Ca2+-induced relaxation. Am. J. Physiol. 276, 1035-1042 (1999).
  14. Mupanomunda, M. M., Tian, B., Ishioka, N., Bukoski, R. D. Renal interstitial Ca2+. Am. J. Physiol. Renal Physiol. 278, F644-F649 (2000).
  15. Awumey, E. M., Hill, S. K., Diz, D. I., Bukoski, R. D. Cytochrome P-450 metabolites of 2-arachidonoylglycerol play a role in Ca2+-induced relaxation of rat mesenteric arteries. Am. J. Physiol. Heart Circ. Physiol. 294, 2363-2370 (2008).
  16. Chen, W., Bergsman, J. B., Wang, X., Gilkey, G., Pierpoint, C. R., Daniel, E. A., Awumey, E. M., Dauban, P., Dodd, R. H., Ruat, M., Smith, S. M. Presynaptic external calcium signaling involves the calcium-sensing receptor in neocortical nerve terminals. PloS One. 5, e8563-e8563 (2010).
  17. Bukoski, R. D. The perivascular sensory nerve Ca2+ receptor and blood pressure regulation: a hypothesis. Am. J. Hypertens. 11, 1117-1123 (1998).
  18. Bukoski, R. D. Dietary Ca2+ and blood pressure: evidence that Ca2+-sensing receptor activated sensory nerve dilator activity couples changes in interstitial Ca2+ with vascular. 16, 218-221 (2001).
check_url/de/3119?article_type=t

Play Video

Diesen Artikel zitieren
Bridges, L. E., Williams, C. L., Pointer, M. A., Awumey, E. M. Mesenteric Artery Contraction and Relaxation Studies Using Automated Wire Myography. J. Vis. Exp. (55), e3119, doi:10.3791/3119 (2011).

View Video