Summary

哺乳动物链接组蛋白亚型表达分析

Published: March 19, 2012
doi:

Summary

我们描述了一个集检测,分析H1链接组蛋白表达水平。个人H1基因的mRNA定量测定基于随机引物反转录实时PCR其次,而量化的H1组蛋白的蛋白质的高效液相色谱分析实现。

Abstract

链接的组蛋白H1结合核小体核心颗粒和DNA连接,促进染色质折叠成较高阶结构。 H1是必不可少的哺乳动物发展1 2-4 体内特定基因的表达调控。之间高度保守的组蛋白H1的连接器组蛋白家族是最异质的群体。在哺乳动物中有11个的H1亚型的差异在发展过程中和在不同类型的细胞调节。这些H1的亚型,包括5躯体H1S(H1A-E),0替换H1,4生殖细胞特定的H1亚型,5 H1x。多个H1亚型在不同的DNA结合的亲和力和染色质压实能力6-9的存在提供了一个额外的染色质功能的调制水平。因此,定量个别H1亚型的mRNA和蛋白质表达分析,为更好地理解更高的监管是必要的为了染色质结构和功能。

在这里,我们描述了一组为分析个别H1亚型的表达水平( 图1),设计实验。各种H1基因变异的基因表达是衡量一套高度敏感和定量逆转录聚合酶链反应(QRT-PCR)检测,这是更快,更准确,更需要少得多的样品与Northern blot分析的替代方法相比。不同于其他大多数细胞mRNA的消息,最组蛋白的基因,包括广大H1基因,基因缺乏长期的polyA的尾巴,但包含茎环结构,在3'非翻译区(UTR)10。因此,cDNA的准备从总RNA反转录使用的寡-dT引物随机引物。每个H1亚型( 见表1)的特异性引物实时荧光PCR检测以获得个别H1亚型的mRNA水平的定量测量第看家基因表达分析作为正常化的控制。

每个H1亚型和核心组蛋白的蛋白质的相对丰度获得通过反相高效液相色谱法(RP-HPLC法)11-13哺乳动物细胞中提取的总组蛋白的分析。高效液相色谱法和洗脱条件,描述了在这里给鼠标的H1亚型的最佳分离。我们通过量化高效液相色谱法剖面,计算个别H1亚型H1的家庭内的相对比例,以及确定在细胞的核小体比H1。

Protocol

1。样品制备和RNA提取 RNA提取之前,所有工作表面和移液器应该被消灭,用70%乙醇和核糖核酸酶去污解决方案,如核糖核酸酶摧毁,治疗。这种做法降低了RNase污染和RNA降解的机会。戴手套的所有程序。 小鼠组织中提取的RNA,从安乐死鼠标利益的解剖器官,组织洗冰冷的磷酸盐缓冲液(PBS:0.13 M氯化钠,5毫米磷酸钠二元亚铁,5毫米磷酸二氢钠亚铁,pH值7.4) 。立即着手中的RNA提?…

Discussion

这里提出了一套检测启用链接哺乳动物组蛋白亚型表达水平的综合分析。正确设计的QRT-PCR检测提供从任何哺乳动物组蛋白H1基因的高度敏感和精确的测量RNA的消息。链接组蛋白亚型基因的实时定量PCR检测的重要组成部分,是使用随机引物反转录的cDNA的准备。 mRNA的最组蛋白的基因,包括大多数H1基因,不包含长聚,一个在其他细胞基因的尾巴。因此,传统与寡-dT引物逆转录方法不能有效地将生产?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

支持这项工作是由美国国立卫生研究院授予GM085261和佐治亚癌症联盟杰出学者奖“(银发)。

Materials

Name of the reagent Company Catalogue number
RNase Zap Applied Biosystems AM9780
Trizol Reagent Invitrogen 15596-018
SuperScriptIII Invitrogen 18080-051
Absolute Ethanol Fisher Scientific BP2818-4
IQ SYBR Green Bio-Rad 170-8880
RNeasy Mini Kit Qiagen 74104
Deoxyribonuclease I Sigma AMP-D1
Microseal 96-well PCR plate Bio-Rad MSP-9605
Microseal ‘B’ Adhesive Seals Bio-Rad MSB-1001
Sucrose Agros Organics AC40594
Sodium phosphate dibasic heptahydrate (Na2HPO4·7H2O) Fisher Scientific BP332
Sodium chloride (NaCl) American Bioanalytical AB01915
Sodium dihydrogen phosphate heptahydrate (NaH2PO4·7H2O) Fisher Scientific BP-330
HEPES Fisher Scientific BP310
Complete Mini proteinase inhibitor cocktail tablet Roche Applied Science 11836153001
EDTA Sigma E-5134
Phenylmethanesulfonyl fluoride (PMSF) American Bioanalytical AB01620
Nonidet-40 (NP-40) American Bioanalytical AB01425
Potassium chloride (KCl) Fisher Scientific BP366
Tris [hydroxymethyl aminomethane] American Bioanalytical AB02000
Magnesium chloride (MgCl2) Fisher Scientific BP214
Sulfuric acid (H2SO4) VWR VW3648-3
Ammonium hydroxide (NH4OH) Agros Organics AC42330
Bradford Protein Assay Bio-Rad 500-0001
Acetonitrile EMD AX0145-1
Trifluoroacetic acid (TFA) J.T.Baker 9470-01

Referenzen

  1. Fan, Y. H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol. Cell Biol. 23, 4559-4572 (2003).
  2. Woodcock, C. L., Skoultchi, A. I., Fan, Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res. 14, 17-25 (2006).
  3. Shen, X., Gorovsky, M. A. Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell. 86, 475-483 (1996).
  4. Alami, R. Mammalian linker-histone subtypes differentially affect gene expression in vivo. Proc. Natl. Acad. Sci. U.S.A. 100, 5920-5925 (2003).
  5. Happel, N., Doenecke, D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene. 431, 1-12 (2009).
  6. Clausell, J., Happel, N., Hale, T. K., Doenecke, D., Beato, M. Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. PLoS One. 4, 0007243-0007243 (2009).
  7. Khadake, J. R., Rao, M. R. DNA- chromatin-condensing properties of rat testes H1a and H1t compared to those of rat liver H1bdec; H1t is a poor condenser of chromatin. Biochemie. 34, 15792-15801 (1995).
  8. Orrego, M. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin. BMC Biol. 5, 22-22 (2007).
  9. Th’ng, J. P., Sung, R., Ye, M., Hendzel, M. J. H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain. J. Biol. Chem. 280, 27809-27814 (2005).
  10. Wang, Z. F., Sirotkin, A. M., Buchold, G. M., Skoultchi, A. I., Marzluff, W. F. The mouse histone H1 genes: gene organization and differential regulation. J. Mol. Biol. 271, 124-138 (1997).
  11. Brown, D. T., Sittman, D. B. Identification through overexpression and tagging of the variant type of the mouse H1e and H1c genes. J. Biol. Chem. 268, 713-718 (1993).
  12. Fan, Y., Sirotkin, A., Russell, R. G., Ayala, J., Skoultchi, A. I. Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1(0) replacement subtype. Mol. Cell. Biol. 21, 7933-7943 (2001).
  13. Fan, Y., Skoultchi, A. I. Genetic analysis of H1 linker histone subtypes and their functions in mice. Methods Enzymol. 377, 85-107 (2004).
  14. Heid, C. A., Stevens, J., Livak, K. J., Williams, P. M. Real time quantitative PCR. Genome Res. 6, 986-994 (1996).
check_url/de/3577?article_type=t

Play Video

Diesen Artikel zitieren
Medrzycki, M., Zhang, Y., Cao, K., Fan, Y. Expression Analysis of Mammalian Linker-histone Subtypes. J. Vis. Exp. (61), e3577, doi:10.3791/3577 (2012).

View Video