Summary

抛光和钢筋,颅骨变薄窗口,为长期的小鼠脑成像

Published: March 07, 2012
doi:

Summary

我们提出了一个方法,形成一个横跨毫米,是没有大脑的炎症个月稳定在小鼠颅骨的影像窗口。这种方法非常适合于使用双光子显微镜的血液流通,细胞动力学,细胞/血管结构的纵向研究。

Abstract

在体内的皮质功能成像需要光纤接入无脑颅内环境的破坏。我们提出了一个方法,在小鼠颅骨,跨越直径几毫米个月的稳定形成抛光和钢筋颅骨变薄(端口)窗口。手举行演习,以实现光学清晰度头骨10至15微米的厚度变薄,然后覆盖氰基丙烯酸酯胶和玻璃盖:1)提供刚性,2)抑制骨的再生和3)减少光散射从骨表面上的违规行为。由于颅骨没有违反,任何可能会影响正在研究过程中的炎症,会大大减少。可以实现利用双光子激光扫描显微镜成像深度可达250微米以下的皮质表面。这个窗口非常适合研究脑血流和细胞的功能,在麻醉和清醒的准备。它进一步提供运portunity操纵细胞的活性,利用光遗传学或破坏由照射循环光敏剂的目标船只的血流量。

Protocol

1。准备手术, 我 清洁及手术Maxizyme超声波清洗机的牛奶混合物中超声分散的手术工具。高压灭菌之前,每个实验的外科手术工具。 确保所有必要的试剂和耗材可用。表2中提供的试剂和耗材清单。试剂和耗材,在接触到暴露组织应该是无菌的,在可能的情况下。 诱导麻醉。表1描述了适合生存研究的典型麻醉药。为缺乏脚趾掐反射的检查,以确保手术的麻醉平面。鼠…

Discussion

通过一个端口“窗口中的双光子成像需要通过传输薄骨和硬脑膜,衰减激光和光学像差增加了更大的深度8。然而,尽管这个缺点,成像深度可达250微米以下脑膜表面可以达到900 nm激发。大成像深度可能在原则上有可能与较长的激发波长13。这种方法的主要优点是皮质炎症的情况下,可能存在短暂的涉及全开颅14,15的方法。一个精心准备的端口窗口应显示血管生成或炎症没…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国心脏协会(博士后奖学金AYS)和国立卫生研究院(MH085499,EB003832,并OD006831 DK)的支持。我们感谢贝思·弗里德曼和巴勃罗·布林德手稿上的评论。

Materials

Agent Route of delivery Dose for mouse Duration Notes Source Ref Ref
Pentobarbital (Nembutal) IP 90 μg/g 15-60 min Narrow safety margin. Work up to proper dose of anesthesia slowly. Supplement 10 % of induction dose as required. 036093; Butler Schein 7
Ketamine (Ketaset) mixed with Xylazine (Anased) IP 60 μg/g (K)
10 μg/g (X) (mix in same syringe)
20-30 min Xylazine is co-injected as a muscle relaxant and analgesic. Supplement only Ketamine at 50% of induction dose as required. (K) 010177, (X) 033198; Butler Schein 7
Isoflurane (Isothesia) Inhalation 4% mean alveolar concentration (MAC) for induction; 1-2% MAC for maintenance 4-6 h. Provided in mixture of 70% oxygen and 30% nitrous oxide. Prolonged anesthesia leads to slow recovery. 029403; Butler Schein 26

Table 1. Suggested anesthetic agents for survival studies.

ITEM COMPANY CATALOG # / MODEL
Betadine Butler Schein 6906950
Buprenorphine (Buprenex) Butler Schein 031919
Fluorescein isothiocyanate dextran, 2 MDa molecular weight Sigma FD2000S
Isopropyl alcohol Fisher AC42383-0010
Lactated Ringer’s Solution Butler Schein 009846;
Lidocaine solution, 2 % (v/v) Butler Schein 002468
Saline Butler Schein 009861
Surgical Milk Butler Schein 014325
Texas Red dextran, 70 kDa molecular weight Invitrogen D1864
Maxizyme Butler Schein 035646
DISPOSABLES
Carbide burrs, 1/2 mm tip size Fine Science Tools 19007-05
Cottoned tip applicators Fisher Scientific 23-400-100
Cover Glass, no. 0 thickness Thomas Scientific 6661B40
Cyanoacrylate glue ND Industries 31428 H04308
Gas duster Newegg N82E16848043429
Grip cement powder Dentsply 675571
Grip cement solvent Dentsply 675572
Insulin syringe, 0.3 mL volume with 29.5 gauge needle Butler Schein 018384
Nut and bolt to secure the head Digikey Nut, H723-ND; bolt, R2-56X1/4-ND
Opthalmic ointment Butler Schein 039886
Scalpel blades Fisher Scientific 12-460-448
Screws, self-tapping #000 J.I. Morris Company FF000CE125
Silicone aquarium sealant Perfecto Manufacturing 31001
Tin oxide powder Mama’s Minerals EQT-TINOX
EQUIPMENT
Glass scribe Fisher Scientific 08-675
Dissecting microscope Carl Zeiss OPMI-1 FC
Electric powered drill Foredom or Osada K.1020 (Foredom) or EXL-M40 (Osada)
Electrical razor Wahl Series 8900
Forceps, Dumont no. 55 Fine Science Tools 11255-20
Feedback regulated heat pad FHC 40-90-8 (rectal thermistor, 40-90-5D-02; heat pad, 40-90-2-07)
Isoflurane vaporizer Ohmeda IsoTec4
Pulse oximeter Starr Life Sciences MouseOx
Screwdriver, miniature Garret Wade 26B09.01
Stereotaxic frame Kopf Instruments Model 900 (with mouse anesthesia mask and non-rupture ear bars)
Surgical scissors, blunt end Fine Science Tools 14078-10
Ultrasonic cleaner Fisher Scientific 15-335-30

Table 2. List of specific reagents, disposables and equipment.

Referenzen

  1. Cetin, A. Stereotaxic gene delivery in the rodent brain. Nature Protocols. 1, 3166-3173 (2006).
  2. Kleinfeld, D., Delaney, K. R. Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage sensitive dyes. Journal of Comparative Neurology. 375, 89-108 (1996).
  3. Driscoll, J. D., Yuste, R. Quantitative two-photon imaging of blood flow in cortex. Imaging in Neuroscience and Development. , 927-937 (2011).
  4. Drew, P. J., Shih, A. Y., Kleinfeld, D. Fluctuating and sensory-induced vasodynamics in rodent cortex extends arteriole capacity. Proceedings of the National Academy of Sciences U.S.A. 108, 8473-8473 (2011).
  5. Mostany, R., Portera-Cailliau, C. A Method for 2-Photon Imaging of Blood Flow in the Neocortex through a Cranial Window. J. Vis. Exp. (12), e678-e678 (2008).
  6. Zhang, S. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. Journal of Neuroscience. 25, 5333-5338 (2005).
  7. Takano, T. Astrocyte-mediated control of cerebral blood flow. Nature Neuroscience. 9, 260-267 (2006).
  8. Drew, P. J. Chronic optical access through a polished and reinforced thinned skull. Nature Methods. 7, 981-984 (2010).
  9. Marker, D. F. A thin-skull window technique for chronic two-photon in vivo imaging of murine microglia in models of neuroinflammation. Journal of Visualized Experiments. (43), e2059-e2059 (2010).
  10. Feng, G. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 28, 41-51 (2000).
  11. Martin, C. Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat. Neuroimage. 32, 33-48 (2006).
  12. Shih, A. Y. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. Journal of Cerebral Blood Flow and Metabolism. , (2011).
  13. Kobat, D. Deep tissue multiphoton microscopy using longer wavelength excitation. Optics Express. 17, 13354-13364 (2009).
  14. Holtmaat, A. high-resolution imaging in the mouse neocortex through a chronic cranial window. Nature Protocols. 4, 1128-1144 (2009).
  15. Xu, H. T. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nature Neuroscience. 10, 549-551 (2007).
  16. Nimmerjahn, A., Kirchhoff, F., Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 308, 1314-1318 (2005).
  17. Davalos, D. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience. 8, 752-758 (2005).
  18. Ascenzi, A., Fabry, C. Technique for dissection and measurement of refractive index of osteons. The Journal of Biophysical and Biochemical Cytology. 6, 139-142 (1959).
  19. Stosiek, C. In vivo two-photon calcium imaging of neuronal networks. Proceedings of the National Academy of Sciences U.S.A. 100, 7319-7324 (2003).
  20. Grinvald, A. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature. 324, 361-364 (1986).
  21. Dunn, A. K. Dynamic imaging of cerebral blood flow using laser speckle. Journal of Cerebral Blood Flow & Metabolism. 21, 195-201 (2001).
  22. Villringer, A. Capillary perfusion of the rat brain cortex: An in vivo confocal microscopy study. Circulation Research. 75, 55-62 (1994).
  23. Denk, W., Strickler, J. H., Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science. 248, 73-76 (1990).
  24. Srinivasan, V. J. Optical coherence tomography for the quantitative study of cerebrovascular physiology. Journal of Cerebral Blood Flow & Metabolism. 31, 1339-1345 (2011).
  25. Hu, S., Wang, L. V. Photoacoustic imaging and characterization of the microvasculature. Journal of Biomedical Optics. 15, 011101-011101 (2010).
  26. Flecknell, P. A. . Laboratory animal anesthesia. , (1987).
check_url/de/3742?article_type=t

Play Video

Diesen Artikel zitieren
Shih, A. Y., Mateo, C., Drew, P. J., Tsai, P. S., Kleinfeld, D. A Polished and Reinforced Thinned-skull Window for Long-term Imaging of the Mouse Brain. J. Vis. Exp. (61), e3742, doi:10.3791/3742 (2012).

View Video