Summary

从兔模型中分离纯化滑液源性间充质干细胞的磁活化细胞分选策略

Published: August 10, 2018
doi:

Summary

本文提出了一种简单而经济的协议, 直接隔离和纯化新西兰白兔滑液间充质干细胞。

Abstract

间充质干细胞 (MSCs) 是细胞治疗的主要细胞来源。关节腔滑液中的 MSCs 可能用于软骨组织工程。滑膜液中的骨髓间充质干细胞被认为是促进关节再生的候选者, 其潜在的治疗效果已成为晚期的一个重要研究课题。从新西兰白兔的膝腔中的 SF 干细胞可以作为一种优化的转化模型来评估人体再生医学。通过 CD90-based 磁活化细胞分选 (mac) 技术, 该协议成功地从该兔模型中获得了兔 SF-mscs (rbSF), 并通过诱导它们分化为进一步充分展示了这些细胞的 MSC 表型。成骨细胞, 脂肪细胞和软骨。因此, 这种方法可以应用于细胞生物学研究和组织工程中, 使用简单的设备和程序。

Introduction

骨髓间充质干细胞被认为是再生医学的宝贵来源, 尤其是软骨损伤。骨髓间充质干细胞, 包括软骨细胞、成骨细胞、脂肪细胞、骨骼肌细胞和内脏基质干细胞, 由于其高扩张率和多谱系分化潜能1, 广泛扩大了干细胞移植的面积。MSCs 可从骨骼肌、滑膜、骨髓和脂肪组织中分离出234。研究结果还 confirmed 了在滑膜液中的 MSCs 的存在, 先前的调查已经确定了滑膜液源性 mscs (SF-mscs) 作为关节再生56的有望候选者。

然而, 人体标本的研究和前期实验受到许多伦理问题的影响。相反, 兔子一直是并且继续是最常用的动物种类表明, 骨髓间充质干细胞移植可以修复软骨损伤。近年来, 越来越多的研究人员研究了兔间充质干细胞 (rbMSCs)的体外体内作用, 因为这些细胞在细胞生物学和组织生理学上与人的 MSCs 相似。同样, rbMSCs 能够附着在塑料表面, 显示纺锤体成纤维细胞形态, 如在人类 MSCs 中。此外, 家兔间充质样品简单易获得7。此外, 最关键的一点是, rbMSCs 明确的表面标记, 如 CD44, CD90, 和 CD105, 并认为多血统分化潜力保持, 这是符合标准的鉴定的 MSC 人口作为由国际社会为细胞疗法定义8,9。特别是, 滑膜液生发能够在 TGF-β1诱导下的非肥厚软骨, 从而使其适合表型关节软骨再生10,11的细胞源, 12

然而, 与其他组织 (包括脐带、脂肪组织、外周血、骨髓) 的分离有很大的不同。目前, 采用流式细胞术和磁珠分选方法对 SF MSCs 进行纯化和分类是最常用的方法, 尽管流式细胞术法需要特定的环境和高成本的仪器13

本文介绍了一种简便、微创的新西兰白兔滑液标本采集方法。在该过程中, rbSF-MSCs 在体外稳定扩张, 然后以 CD90 正磁珠为基础进行分离。最后, 该协议显示了如何从收获的细胞来源获得高纯度和生存能力的 MSCs。

在该协议中, 分离的 rbSF-MSCs 的特点是基于它们的形态学, 特定标记的表达, 和干细胞的干细胞。基于流式细胞术的免疫分型揭示了 CD44 和 CD105 的显著阳性表达, 而 CD45 和 CD34 的表达呈阴性。最后, 对 rbSF 骨髓间充质干细胞的体外测定表明了这些细胞的成骨、脂肪和软骨分化。

Protocol

所有动物实验都是按照区域伦理委员会的指导方针进行的, 所有动物程序都是由深圳市第二人民医院机构动物护理和使用委员会批准的。 1. 分离和培养 rbSF-MSCs 准备为动物做法 制备 skeletally 成熟的新西兰雌性白兔, 用于收集 rbSF-MSCs. 在麻醉和冲洗术手术前一天对兔子进行一次临床检查。注: 体格检查应包括体重 (2.0-2.5 公斤)、性别 (女性)、体温、…

Representative Results

rbSF-MSCs 的分离、纯化和培养:根据 MSC 表面标记 CD90 的表达式, 该协议使用 mac 隔离 rbSF MSCs。图 1显示了 rbSF-MSCs 的分离、纯化和表征以及体外培养协议的工艺流程图。 磁性活化细胞分选 (mac) 与 CD90 后的细胞形态学:首先, 对于 mac, immunolabel MSCs 与 CD90 磁珠。离心后, 并?…

Discussion

在滑膜液中 MSCs 的存在为细胞治疗提供了一种替代方法。以往的研究表明, 损伤部位在滑液中含有较高数量的间充质干细胞, 这可能与损伤后5期呈正相关。在滑膜液中的 MSCs 可能有利于组织, 以加强在伤害18,19的自发愈合。在文献中很少涉及 sf 间充质干细胞的临床应用, 主要是因为关节内的 sf-mscs 的机制仍未确定20。琼…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项研究得到了以下赠款的资助: 中国自然科学基金 (81572198 号;81772394号);深圳大学高等医学学科建设基金 (2016031638 号);中国广东省医学研究基金会 (no。A2016314);和深圳科技项目 (no。JCYJ20170306092215436;大声 笑JCYJ20170412150609690;大声 笑JCYJ20170413161800287;大声 笑SGLH20161209105517753;大声 笑JCYJ20160301111338144)。

Materials

Reagents
MesenGro StemRD MGro-500 1703 Warm in 37 °C water bath before use
MesenGro Supplement StemRD MGro-500 M1512 Component of MSCs culture medium
DMEM basic Gibco Inc. C11995500BT MSCs differentiation medium
Isotonic saline solution Litai, China 5217080305 Cavity arthrocentesis procedure reagent
Phosphate-Buffered Saline (PBS) HyClone Inc. SH30256.01B PBS, free of Ca2+/Mg2+
Fetal Bovine Serum (FBS) Gibco Inc. 10099-141 Component of MSCs culture medium
Povidone iodine solution Guangdong, China 150605 Sterilization agent
75% ethanol Lircon, china 170917 Sterilization agent
0.25% Trypsin/EDTA Gibco Inc. 25200-056 Cell dissociation reagent
1% Penicillin-Streptomycin Gibco Inc. 15140-122 Component of MSCs medium
MACS Running Buffer MiltenyiBiotec 5160112089 Containing phosphate-buffered saline (PBS), 0.5% bovine serum albumin(BSA), and 2 mMEDTA
CD90 antibody conjugated MicroBeads MiltenyiBiotec 5160801456 For magnetic activated cell sorting
Sodium pyruvate Sigma-Aldrich P2256 Component of MSCs chondrogenic differentiation
Dexamethasone Sigma-Aldrich D1756 Component of MSCs osteogenic differentiation
ITS BD 354352 1%, Component of MSCs chondrogenic differentiation
L-proline Sigma-Aldrich P5607 0.35 mM, Component of MSCs chondrogenic differentiation
L-ascorbic acid-2-phosphate Sigma-Aldrich A8960 50 mM, Component of MSCs chondrogenic differentiation
3-isobutyl-1-methylxanthine Sigma-Aldrich I5879 0.5 mM, Component of adipogenic differentiation
Indomethacin Sigma-Aldrich I7378 100 mM, Component of adipogenic differentiation
TGFβ1 Peprotech 100-21 10 ng/mL, Component of MSCs chondrogenic differentiation
α-glycerophsphate Sigma-Aldrich G6751 Component of MSCs osteogenic differentiation
CD34 Polyclonal Antibody, FITC Conjugated Bioss bs-0646R-FITC Hematopoietic stem cells marker
Mouse antirabbit CD44 Bio-Rad MCA806GA Thy-1 membrane glycoprotein (MSCs marker)
CD45 (Monoclonal Antibody) Bio-Rad MCA808GA Hematopoietic stem cells marker
CD105 antibody Genetex GTX11415 MSCs marker
Isopropyl alcohol Sigma-Aldrich I9030 Precipitates RNA extraction organic phases
Trichloromethane Wenge, China 61553 Extract total RNA
Trizol Invitrogen 15596-018 Isolate total RNA
SYBR green master mix Takara Bio, Japan RR420A PCR test
cDNA synthesis kit Takara Bio, Japan RR047A Reverse-transcribed to complementary DNA
Alizarin Red Sigma-Aldrich A5533 Staining of calcium compounds
Toluidine Blue Sigma-Aldrich 89640 Staining of cartilaginous tissue
Oil Red O solution Sigma-Aldrich O1391L Lipid vacuole staining
Equipment
MiniMACS Separator MiltenyiBiotec 130-042-102 For magnetic activated cell sorting
MultiStand MiltenyiBiotec 130-042-303 For magnetic activated cell sorting
MS Columns MiltenyiBiotec 130-042-201 For magnetic activated cell sorting
Cell Strainer FALCON Inc. 352340 40 μm nylon
Hemocytometer ISOLAB Inc. 075.03.001 Cell counting
Falcon 100 mm  dish Corning 353003 Cell culture dish
Microcentrifuge tube Axygen MCT-150-C RNA Extraction and PCR
Centrifuge Tubes Sigma-Aldrich 91050 Gamma-sterilized
High-speed centrifuge Eppendorf 5804R Centrifuge cells
Carbon dioxide cell incubator Thermo scientific 3111 Cell culture
Real-Time PCR Instrument Life Tech QuantStudio Real-Time quantitative polymerase chain reaction
Flow cytometer BD Biosciences 342975 Cell analyzer
Pipettor Eppendorf O25456F Transfer the liquid
Cloning cylinder Sigma-Aldrich C3983-50EA Isolate and pick individual cell colonies
Sterile hypodermic syringe Double-Dove, China 131010 Arthrocentesis procedure
Rabbit cage Zhike, China ZC-TGD Restrain the rabbit

Referenzen

  1. Oreffo, R. O., Cooper, C., Mason, C., Clements, M. Mesenchymal stem cells: lineage, plasticity, and skeletal therapeutic potential. Stem Cell Reviews. 1 (2), 169-178 (2005).
  2. Asakura, A., Rudnicki, M. A., Komaki, M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation. 68 (4-5), 245-253 (2001).
  3. De, B. C., Dell’Accio, F., Tylzanowski, P., Luyten, F. P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheumatology. 44 (8), 1928-1942 (2001).
  4. Zuk, P. A., et al. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell. 13 (12), 4279-4295 (2002).
  5. McGonagle, D., Jones, E., English, A., Emery, P. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis & Rheumatism. 50 (3), 817-827 (2004).
  6. Jia, Z., et al. Isolation and characterisation of human mesenchymal stem cells derived from synovial fluid by magnetic activated cell sorting (MACS). Cell Biology International. , (2017).
  7. Bashir, M., et al. Isolation, culture and characterization of New Zealand white rabbit mesenchymal stem cells derived from bone marrow. Asian Journal of Animal & Veterinary Advances. 10 (8), 13-30 (2015).
  8. Song, X., et al. Differentiation potential of rabbit CD90-positive cells sorted from adipose-derived stem cells in vitro. In Vitro Cellular & Developmental Biology – Animal. 53 (1), 1-6 (2016).
  9. Lee, T. C., et al. Comparison of surface markers between human and rabbit mesenchymal stem cells. PLOS One. 9 (11), e111390 (2014).
  10. Stewart, M. C., Chen, Y., Bianchessi, M., Pondenis, H. Phenotypic characterization of equine synovial fluid-derived chondroprogenitor cells. Stem Cell Biology and Research. 3 (1), (2016).
  11. Prado, A. A. F., et al. Characterization of mesenchymal stem cells derived from the equine synovial fluid and membrane. BioMed Central Veterinary Research. 11 (1), 281 (2015).
  12. Yoshimura, H., et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell and Tissue Research. 327 (3), 449-462 (2007).
  13. Wu, C. C., et al. Intra-articular injection of platelet-rich fibrin releasates in combination with bone marrow-derived mesenchymal stem cells in the treatment of articular cartilage defects: an in vivo study in rabbits. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 105 (6), 1536-1543 (2017).
  14. John, T., Lerche, P. . Anesthesia and Analgesia for Veterinary Technicians. , (2011).
  15. Koyama, N., et al. Pluripotency of mesenchymal cells derived from synovial fluid in patients with temporomandibular joint disorder. Life Sciences. 89 (19-20), 741-747 (2011).
  16. Kim, Y. S., et al. Isolation and characterization of human mesenchymal stem cells derived from synovial fluid in patients with osteochondral lesion of the talus. American Journal of Sports Medicine. 43 (2), 399-406 (2015).
  17. Vereb, Z., et al. Immunological properties of synovial fluid-derived mesenchymal stem cell-like cells in rheumatoid arthritis. Annals of the Rheumatic Diseases. 74 (Suppl 1), A64-A65 (2015).
  18. Matsukura, Y., Muneta, T., Tsuji, K., Koga, H., Sekija, I. Mesenchymal stem cells in synovial fluid increase after meniscus injury. Clinical Orthopaedics & Related Research. 472 (5), 1357-1364 (2014).
  19. Morito, T., et al. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology. 47 (8), 1137-1143 (2008).
  20. Hegewald, A. A., et al. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue & Cell. 36 (6), 431-438 (2004).
  21. Jones, E. A., et al. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single cell level. Arthritis & Rheumatism. 58 (6), 1731-1740 (2008).
  22. Makker, K., Agarwal, A., Sharma, R. K. Magnetic activated cell sorting (MACS): utility in assisted reproduction. Indian Journal of Experimental Biology. 46 (7), 491-497 (2008).
  23. Schmitz, B., et al. Magnetic activated cell sorting (MACS) — a new immunomagnetic method for megakaryocytic cell isolation: comparison of different separation techniques. European Journal of Haematology. 52 (5), 267-275 (1994).
  24. Reinhardt, M., Bader, A., Giri, S. Devices for stem cell isolation and delivery: current need for drug discovery and cell therapy. Expert Review of Medical Devices. 12 (3), 353-364 (2015).
  25. Gronthos, S., Zannettino, A. C. W., Prockop, D. J., Bunnell, B. A., Phinney, D. G. A method to isolate and purify human bone marrow stromal stem cells. Mesenchymal Stem Cells. , 45-57 (2008).
  26. Krawetz, R. J., et al. Synovial fluid progenitors expressing CD90+ from normal but not osteoarthritic joints undergo chondrogenic differentiation without micro-mass culture. PLOS One. 7 (8), e43616 (2012).
  27. Ogata, Y., et al. Purified human synovium mesenchymal stem cells as a good resource for cartilage regeneration. PLOS One. 10 (6), e0129096 (2015).
  28. Dominici, M., et al. Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement. Cytotherapy. 8 (4), 315-317 (2006).
  29. Gauci, S. J., et al. Modulating chondrocyte hypertrophy in growth plate and osteoarthritic cartilage. Journal of Musculoskeletal & Neuronal Interact. 8 (4), 308 (2008).
  30. Cooke, M. E., et al. Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy. Osteoarthritis and Cartilage. 19 (10), 1210-1218 (2011).
  31. Fischer, J., Dickhut, A., Rickert, M., Richter, W. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis and Rheumatism. 62 (9), 2696-2706 (2010).
check_url/de/57466?article_type=t

Play Video

Diesen Artikel zitieren
Jia, Z., Liang, Y., Li, X., Xu, X., Xiong, J., Wang, D., Duan, L. Magnetic-Activated Cell Sorting Strategies to Isolate and Purify Synovial Fluid-Derived Mesenchymal Stem Cells from a Rabbit Model. J. Vis. Exp. (138), e57466, doi:10.3791/57466 (2018).

View Video