Summary

使用非整合方法分离成人人体皮肤纤维细胞与诱导多能干细胞的生成

Published: January 19, 2020
doi:

Summary

细胞重新编程需要引入关键基因,这些基因调节和维持多能细胞状态。所述方案使诱导多能干细胞(iPSCs)菌落的形成来自人类皮肤成纤维细胞,无需病毒/整合方法,但使用非修饰RNA(NM-RNA)结合免疫逃逸因子减少细胞防御机制。

Abstract

诱导多能干细胞(iPSCs)可被视为迄今为止一个有前途的多能细胞来源,用于管理目前无法治疗的疾病、重建和再生受伤组织以及开发新药。尽管与使用 iPSC 相关的所有优势,例如拒绝风险低、道德问题减少,以及有可能从年轻和老年患者那里获得这些差异,而他们的重新编程潜力没有任何差异,但需要克服的问题仍然很多。事实上,使用病毒和整合病毒进行的细胞重新编程会导致感染,而引入所需基因会导致受体细胞的基因组不稳定,从而损害其在临床上的使用。特别是,有许多关于使用c-Myc基因的关注,从几项研究中,它因其突变诱导活性而广为人知。纤维细胞已成为细胞重新编程的合适细胞群,因为它们易于分离和培养,并且通过微创性皮肤冲活检进行收获。此处描述的协议提供了整个过程的详细分步描述,从样品加工到获取细胞培养、试剂和用品的选择、清洁和制备,以及通过商业方式对细胞重新编程基于非改性RNA(NM-RNA)的重新编程套件。所选择的重新编程试剂盒允许对iPSC进行有效的人体皮成纤维细胞重新编程,并且在第一次转染后24小时就可以看到小菌落,即使对标准数据表进行修改也是如此。该协议中使用的重新编程过程具有安全重新编程的优点,无需病毒载体方法引起的感染风险,减少了细胞防御机制,并允许生成无异种的 iPSC,所有为进一步临床应用而必须提供的关键功能。

Introduction

细胞重新编程是一种新技术,将身体的每一个体细胞转化为多能干细胞,称为iPSC1。将成人体细胞重新编程回到多能和未分化状态的可能性已经克服了与使用多能细胞(以前只能来自人类胚胎(胚胎干细胞或ESC)2、3、4)的多能细胞和伦理问题有关的不良可用性和伦理问题所施加的限制。2006年,高桥和山中信亚进行了一项开创性的研究,通过人工添加四个特定基因(Oct4、Sox2、Klf4、c-Myc)5,实现了成人体细胞从皮肤转化为多能细胞的首次转化。一年后,在汤姆森实验室进行的工作通过转导四个基因的不同组合(Oct4、Sox2、Nanog、Lin28)6,成功地将体细胞重新编程为iPSC。

iPSCs为不同领域的科学家和研究人员提供了许多机会,如再生医学和药理学,是研究和治疗不同疾病以及基因性反映患者特征的绝佳平台。iPSC的使用提供了几个优点,包括:由于细胞完全自体来源,免疫反应风险降低;创建细胞库的可能性,这是预测对新药及其副作用反应的重要工具,因为它们能够持续自我更新并产生不同的细胞类型;并有机会为药物管理7、8、9开发一种定制方法。

目前已知的各种技术,诱导重编程因素的表达,它们被包括两大类:非病毒和病毒载体的方法10,11,12,13。非病毒方法包括mRNA转染,miRNA感染/转染,PiggyBac,小圆载体和表皮质粒和外体体10,11,12,13。基于病毒的方法包括非整合病毒,如腺病毒、仙台病毒和蛋白质,以及整合病毒,如逆转录病毒和Lenti病毒10,11,12,13。

根据几项研究,这些方法在细胞重新编程的有效性方面没有显著差异,因此,选择合适的方法完全取决于所使用的细胞类型,以及随后的iPSCs应用获得14,15。上述所有方法都显示出缺点,例如,仙台病毒对所有细胞类型都有效,但需要大量通道才能获得iPSC;表皮体重新编程对血细胞是极好的,但需要修改成纤维细胞的标准培养条件;PiggyBac方法可能是一个有吸引力的替代方法,但人类细胞的研究仍然有限,弱10,11,12,13。外泌体是纳米囊泡,由细胞在生理上分泌到所有体液中。根据最近的研究,它们负责细胞间通信,可以在重要的生物过程中发挥作用,如细胞增殖、迁移和分化。外体体可以移植和转移mRNA和miRNA到受体细胞与完全自然的机制,因为他们共享相同的细胞膜16的组成。因此,外体是一种很有前途的新一代重新编程技术,但它们通过内容重新编程体细胞的潜力仍在调查中。基于病毒载体的方法使用经过修饰的病毒,以便将重新编程的基因传送到受体细胞。这项技术,尽管重新编程效率很高,但被认为是不安全的,因为细胞内的病毒整合可以导致感染、畸马细胞瘤和基因组不稳定17。

以下协议,以生成iPSC菌落结合山中和汤普森的重新编程鸡尾酒,并基于使用的方法,要求NM-RNA和免疫逃逸因子,并有可能在无异种条件下执行。使用这种方法的原理是在科学界传播一种协议,允许将成人成纤维细胞从腹部皮肤重新编程到iPSC18中快速、简单和高效的重新编程。

实际上,该方法的优点在于性能的简便性和获得 iPSC 所需的时间短。此外,该方法避免了细胞防御机制和病毒载体的使用,负责相关问题。

关于标准协议,进行了以下修改:(1) 在通道4处同步,在胰蛋白酶化前将0.1%的血清放入48小时;(2) 对培养细胞密度和试剂体积进行调整,以利用24孔多孔板代替6孔板;(3) 重新编程实验使用5%CO2培养箱,而不是具有大气(21%O2)或低氧(5%O2)条件的培养箱。

Protocol

人体组织标本是根据《赫尔辛基宣言》采集的,同时遵守费德里科二世大学医院的指导方针。参与这项研究的所有患者均提供书面同意。 1. 用品和文化媒体的准备 清洁和高压灭菌一把大手术剪刀,两套细钳子,两对微解剖剪刀,1 L无菌瓶,500 mL无菌瓶和250 mL无菌瓶。 准备 100 mm 板、60 mm 板、35 mm 板、一次性手术刀、50 mL 无菌管、15 mL 无菌管和 100 mm 玻璃板。在…

Representative Results

该协议的目的是使用基于NM-RNA的非集成重编程方法重新编程从腹部皮肤分离的皮肤成纤维细胞,以诱导特定因子的表达。为了实现这一目标,从接受腹部粘动手术的患者的皮肤标本中分离出人类皮肤成纤维细胞,通过结合NM-RNA和微RNA技术的商业即用重新编程试剂盒,产生了Oct4、Sox2、Klf4、cMyc、Nanog、Lin28重新编程因子和E3、K3、B18免疫逃逸因子。协议的时间表如图1所示。 <…

Discussion

iPSC正在迅速成为再生医学应用最有前途的细胞候选者,并作为疾病建模和药物测试的非常有用的工具3,8。此处介绍的协议描述了从具有皮肤冲孔活检大小的样本中生成人类 iPSC,其程序简单而高效,不需要任何特定设备或以前重新编程技术的经验。

优化成纤维细胞隔离和培养以提高成功机会至关重要,因为电镀密度和增殖率会影?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者没有承认。

Materials

10 mL serological pipet Falcon 357551 Sterile, polystyrene
100 mm plates Falcon 351029 Treated, sterile cell culture dish
15 mL sterile tubes Falcon 352097 Centrifuge sterile tubes, polypropylene
24-well plates Falcon 353935 Clear, flat bottom, treated multiwell cell culture plate, with lid, sterile
25 mL serological pipet Falcon 357525 Sterile, polystyrene
35 mm plates Falcon 353001 Treated, sterile cell culture dish
5 mL serological pipet Falcon 357543 Sterile, polystyrene
50 mL sterile tubes Falcon 352098 Centrifuge sterile tubes, polypropylene
Advanced DMEM (Dulbecco's Modified Eagle Medium) Gibco 12491-015 Store at 2-8 °C; avoid exposure to light
DMEM (Dulbecco's Modified Eagle Medium) Sigma- Aldrich D6429-500ml Store at 2-8 °C; avoid exposure to light
Fetal Bovine Serum Sigma- Aldrich F9665-500ml Store at -20 °C. The serum should be aliquoted into smaller working volumes to avoid repeated freeze/thaw cycles
Hank's Balanced Salt Solution Sigma- Aldrich H1387-1L Powder
L-glutamine Lonza BE17-605E Store at -20 °C. It should be aliquoted into smaller working volumes to avoid repeated freeze/thaw cycles
Lipofectamine RNAiMAX Transfection Reagent INVITROGEN 13778-030 Synthetic siRNA Transfection Reagent; store at 2-8 °C
Matrigel CORNING 354234 Basement Membrane Matrix, store at -20 °C. Avoid multiple freeze-thaws.
Neubauer Chamber VWR 631-1116 Hemocytometer
NutriStem XF Culture Medium Biological Industries 05-100-1A-500ml Xeno-free, serum-free, low growth factor human ESC/iPSC culture medium. Store at -20 °C. Upon thawing, the medium may be stored at 2-8 °C for 14 days. Media should be aliquoted into smaller working volumes to avoid repeated freeze/thaw cycles.
Opti-MEM Gibco 31985-062-100ml Reduced-Serum Medium; store at 2-8 °C; avoid exposure to light
Penicillin and Streptomycin Sigma- Aldrich P4333-100ml Store at -20 °C. The solution should be aliquoted into smaller working volumes to avoid repeated freeze/thaw cycles
Potassium Chloride Sigma- Aldrich P9333 Powder
Potassium Phosphate Monobasic Sigma- Aldrich P5665 Powder
RNase-free 0.5 mL tubes Eppendorf H0030124537 RNase-free sterile, microfuge tubes, polypropylene
RNase-free 1.5 mL tubes Eppendorf H0030120086 RNase-free sterile, microfuge tubes, polypropylene
RNaseZAP INVITROGEN AM9780 Cleaning agent for removing RNase
Sodium Bicarbonate Sigma- Aldrich S5761 Powder
Sodium Chloride Sigma- Aldrich S7653 Powder
Sodium Phosphate Dibasic Sigma- Aldrich 94046 Powder
StemRNA 3rd Gen Reprogramming Kit Reprocell 00-0076 Third Generation NM-RNAs-based Reprogramming Kit for Cellular Reprogramming of Fibroblasts, Blood, and Urine. Store at or below -70 °C.
Trypsin-EDTA Sigma- Aldrich T4049-100ml Store at -20 °C. It should be aliquoted into smaller working volumes to avoid repeated freeze/thaw cycles

Referenzen

  1. Lo, B., Parham, L. Ethical Issues in Stem Cell Research. Endocrine Reviews. 30 (3), 204-213 (2009).
  2. Wong, W. T., Sayed, N., Cooke, J. P. Induced Pluripotent Stem Cells: How They Will Change the Practice of Cardiovascular Medicine. Methodist Debakey Cardiovasc Journal. 9 (4), 206-209 (2013).
  3. Singh, V. K., Kalsan, M., Kumar, N., Saini, A., Chandra, R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in Cell and Developmental Biology. 3, 2 (2015).
  4. Zacharias, D. G., Nelson, T. J., Mueller, P. S., Hook, C. C. The science and ethics of induced pluripotency: what will become of embryonic stem cells. Mayo Clinic Proceedings. 86 (7), 634-640 (2011).
  5. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126 (4), 663-676 (2006).
  6. Yu, J., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 318 (5858), 1917-1920 (2007).
  7. Yu, Y., Wang, X., Scott, L., Nyberg, S. L. Application of Induced Pluripotent Stem Cells in Liver Diseases. Journal Cell Medicine. 3 (3), 997-1017 (2014).
  8. Ebert, A. D., Liang, P., Wu, J. C. Induced pluripotent stem cells as a disease modeling and drug screening platform. Journal Cardiovascular Pharmacology. 60 (4), 408-416 (2012).
  9. Gupta, S., Sharma, V., Verma, R. S. Recent advances in induced pluripotent stem cell (ipsc) based therapeutics. Journal of Stem Cell Research and Therapy. 3 (3), 263-270 (2017).
  10. Andargie, A., Tadesse, F., Shibbiru, T. Review on Cell Reprogramming: Methods and Applications. Journal of Medicine, Physiology and Biophysics. 25, 2422 (2016).
  11. Warren, L., et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells using synthetic modified mRNA. Cell Stem Cell. 7 (5), 618-630 (2010).
  12. Malik, N., Rao, M. R. A Review of the Methods for Human iPSC Derivation. Methods in Molecular Biology. 997, 23-33 (2013).
  13. Poleganov, M. A., et al. Efficient Reprogramming of Human Fibroblasts and Blood-Derived Endothelial Progenitor Cells Using Nonmodified RNA for Reprogramming and Immune Evasion. Human Gene Therapy. 26 (11), 751-766 (2015).
  14. Brouwer, M., Zhou, H., Kasri, N. N. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies. Stem Cell Reviews and Reports. 12, 54-72 (2016).
  15. Revilla, A., et al. Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine. 10, 893-907 (2016).
  16. Lee, Y. S., et al. Exosome-Mediated Ultra-Effective Direct Conversion of Human Fibroblasts into Neural Progenitor-like Cells. ACS Nano. 12 (3), 2531-2538 (2018).
  17. Bayart, E., Cohen-Haguenauer, O. Technological overview of iPS induction from human adult somatic cells. Current Gene Therapy. 13 (2), 73-92 (2013).
  18. Sacco, A. M., et al. Diversity of dermal fibroblasts as major determinant of variability in cell reprogramming. Journal of Cellular and Molecular Medicine. 23 (6), 4256-4268 (2019).
  19. Shan, Z. Y., et al. Continuous passages accelerate the reprogramming of mouse induced pluripotent stem cells. Cellular Reprogramming. 16 (1), 77-83 (2014).
  20. Schlaeger, T. M., et al. A comparison of non-integrating reprogramming methods. Nature Biotechnology. 33 (1), 58-63 (2015).
  21. Drews, K., Tavernier, G., Demeester, J., et al. The cytotoxic and immunogenic hurdles associated with non-viral mRNA-mediated reprogramming of human fibroblasts. Biomaterials. 33, 4059-4068 (2012).
  22. Beissert, T., et al. Improvement of In Vivo Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins. Human Gene Therapy. 28 (12), 1138-1146 (2017).
  23. Mathieu, J., et al. Hypoxia induces re-entry of committed cells into pluripotency. Stem Cells. 31 (9), 1737-1748 (2013).
  24. Wang, Y., et al. Hypoxia Enhances Direct Reprogramming of Mouse Fibroblasts to Cardiomyocyte-Like Cells. Cellular Reprogramming. 18 (1), 1-7 (2016).
  25. Deng, Y., et al. Hypoxia enhances buffalo adipose-derived mesenchymal stem cells proliferation, stemness, and reprogramming into induced pluripotent stem cells. Journal of Cellular Physiology. 234 (10), 17254-17268 (2019).
  26. Karagiannis, P., et al. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiological Reviews. 99 (1), 79-114 (2019).
  27. Maherali, N., Hochedlinger, K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell. 3 (6), 595-605 (2008).
  28. Asprer, J. S., Lakshmipathy, U. Current methods and challenges in the comprehensive characterization of human pluripotent stem cells. Stem Cell Reviews and Reports. 11 (2), 357-372 (2015).

Play Video

Diesen Artikel zitieren
Belviso, I., Sacco, A. M., Romano, V., Schonauer, F., Nurzynska, D., Montagnani, S., Di Meglio, F., Castaldo, C. Isolation of Adult Human Dermal Fibroblasts from Abdominal Skin and Generation of Induced Pluripotent Stem Cells Using a Non-Integrating Method. J. Vis. Exp. (155), e60629, doi:10.3791/60629 (2020).

View Video