Summary

小鼠粪便分离和微生物群移植

Published: May 26, 2023
doi:

Summary

这里的目标是概述一个方案,以研究心血管疾病中生态失调的机制。本文讨论了如何无菌收集和移植鼠粪便样本,分离肠道,并使用“Swiss-roll”方法,然后使用免疫染色技术来询问胃肠道的变化。

Abstract

肠道微生物群失调在心血管和代谢紊乱的病理生理学中起作用,但其机制尚不清楚。粪便微生物群移植(FMT)是描述总微生物群或分离物种在疾病病理生理学中的直接作用的宝贵方法。对于复发性 艰难梭菌 感染患者来说,这是一种安全的治疗选择。临床前研究表明,操纵肠道微生物群是研究生态失调与疾病之间机制联系的有用工具。粪便微生物群移植可能有助于阐明用于管理和治疗心脏代谢疾病的新型肠道微生物群靶向疗法。尽管啮齿动物的成功率很高,但仍存在与移植相关的翻译变化。这里的目标是为研究肠道微生物组在实验性心血管疾病中的作用提供指导。在本研究中,描述了小鼠研究中粪便微生物群的收集、处理、处理和移植的详细方案。描述了人类和啮齿动物捐赠者的收集和处理步骤。最后,我们描述了使用瑞士滚动和免疫染色技术的组合来评估心血管疾病的肠道特异性形态和完整性变化以及相关的肠道微生物群机制。

Introduction

心脏代谢紊乱,包括心脏病和中风,是全球主要死亡原因1。缺乏身体活动、营养不良、年龄增长和遗传因素调节这些疾病的病理生理学。越来越多的证据支持肠道微生物群影响心血管和代谢紊乱的概念,包括2型糖尿病2,肥胖3和高血压4,这可能是开发这些疾病新治疗方法的关键。

微生物群引起疾病的确切机制仍然未知,目前的研究差异很大,部分原因是方法学差异。粪便微生物群移植(FMT)是描述总微生物群或分离物种在疾病病理生理学中的直接作用的宝贵方法。FMT广泛用于动物研究以诱导或抑制表型。例如,热量摄入和葡萄糖代谢可以通过将粪便从生病的供体转移到健康的受体来调节56。在人类中,FMT 已被证明是复发性艰难梭菌感染患者的安全治疗选择7。支持其在心血管疾病管理中使用的证据正在出现;例如,从瘦到代谢综合征患者的FMT可提高胰岛素敏感性8。在人类和啮齿动物研究中,肠道生态失调也与高血压有关91011。从喂食高盐饮食的小鼠到无菌小鼠的FMT使受体容易发炎和高血压12

尽管FMT在啮齿动物中的成功率很高,但翻译挑战仍然存在。使用FMT治疗肥胖和代谢综合征的临床试验表明,对这些疾病的影响很小或没有影响131415。因此,需要更多的研究来确定针对肠道微生物群治疗心脏代谢紊乱的其他治疗途径。大多数关于肠道微生物群和心血管疾病的现有证据都是相关的。所描述的协议讨论了如何利用FMT和瑞士滚动技术的组合来显示疾病与肠道微生物群之间的关联,并直接评估肠道所有部分的完整性161718

该方法的总体目标是为研究肠道微生物组在实验性心血管疾病中的作用提供指导。该协议在实验设计中提供了更多细节和关键考虑因素,以促进生理翻译并提高研究结果的严谨性和可重复性。

Protocol

范德比尔特大学的机构动物护理和使用委员会批准了本手稿中描述的所有程序。从杰克逊实验室购买的3个月大的C57B1 / 6雄性小鼠根据实验动物护理和使用指南进行饲养和护理。 1. 人类粪便样本的收集、储存和处理 收集粪便样本,如果受试者在诊所,请使用无菌容器。在收集后36小时内将粪便样品冷藏在4°C,直到准备好处理。或者,使用市售工具收集粪便…

Representative Results

图 1 总结了上述步骤。将小鼠盲肠内容物或人粪便重悬于无菌盐水中以制备浆液,通过管饲法给予无菌小鼠(100μL),首先连续3天,然后每3天一次。在协议结束时,通过尾袖法测量血压,对小鼠实施安乐死,并收获组织以评估肠道微生物群的变化以及心血管和代谢的变化。 选择微生物群的一个关键步骤是确保感兴趣的疾病表型存在于供体中并与生态失…

Discussion

研究肠道微生物群在心血管和代谢疾病中的因果作用的一种有价值的方法是将总微生物群或选择感兴趣的物种转移到无菌小鼠中。在这里,我们描述了从人类和传统饲养的小鼠收集粪便样本到无菌小鼠中的方案,以研究肠道微生物群在高血压疾病中的作用。

在小鼠中,我们使用无菌收集的盲肠内容物在需氧室中处理,而在人类中,我们收集粪便。FMT可以在样品仍然新鲜或在?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项研究得到了范德比尔特临床和转化科学奖资助UL1TR002243(又名)的支持,来自国家推进转化科学中心;美国心脏协会拨款POST903428(致J.A.I.);国家心脏,肺和血液研究所拨款K01HL13049,R03HL155041,R01HL144941(A.K.)和NIH拨款1P01HL116263(V.K.)。 图 1 是使用 Biorender 创建的。

Materials

Alexa Fluor 488 Tyamide SuperBoost ThermoFisher B40932
Anaerobic chamber COY 7150220
Apolipoprotein AI Novus Biologicals NBP2-52979
Artery Scissors – Ball Tip Fine Science Tools 14086-09
Bleach solution Fisher Scientific 14-412-53
Bovine Serum Albumin Fisher Scientific B14
CD3 antibody ThermoFisher  14-0032-82
CD68 monoclonal antibody ThermoFisher 14-0681-82
Centrifuge Fisher Scientific 75-004-221
CODA high throughput monitor Kent Scientic Corporation CODA-HT8
Cryogenic vials Fisher Scientific 10-500-26
Disposable graduate transfer pipettes Fisher Scientific 137119AM
Disposable syringes Fisher Scientific 14-823-2A
Ethanol Fisher Scientific AA33361M1
Feeding Needle Fine Science Tools 18061-38
Filter (30 µm) Fisher Scientific NC0922459
Filter paper sheet Fisher Scientific 09-802
Formalin (10%) Fisher Scientific 23-730-581
High salt diet Teklad TD.03142
OMNIgene.GUT DNAgenotek OM-200+ACP102
Osmotic mini-pumps Alzet  MODEL 2002
PAP Pen Millipore Sigma Z377821-1EA
Petri dish Fisher Scientific AS4050
Pipette tips Fisher Scientific 21-236-18C
Pipettes Fisher Scientific 14-388-100
Serile Phosphate-buffered saline Fisher Scientific AAJ61196AP
Smart spatula Fisher Scientific NC0133733
Stool collection device Fisher Scientific 50-203-7255
TBS Buffer Fisher Scientific R017R.0000
Triton X-100 Millipore Sigma
9036-19-5
Varimix platform rocker Fisher Scientific 09047113Q
Vortex mixer Fisher Scientific 02-215-41
Xylene Fisher Scientific 1330-20-7, 100-41-4

Referenzen

  1. Virani, S. S., et al. Heart disease and stroke statistics-2021 update: a report From the American Heart Association. Circulation. 143 (8), 254 (2021).
  2. Wu, H., et al. The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metabolism. 32 (3), 379-390 (2020).
  3. Crovesy, L., Masterson, D., Rosado, E. L. Profile of the gut microbiota of adults with obesity: a systematic review. European Journal of Clinical Nutrition. 74 (9), 1251-1262 (2020).
  4. Avery, E. G., et al. The gut microbiome in hypertension: recent advances and future perspectives. Circulation Research. 128 (7), 934-950 (2021).
  5. Perez-Matute, P., Iniguez, M., de Toro, M., Recio-Fernandez, E., Oteo, J. A. Autologous fecal transplantation from a lean state potentiates caloric restriction effects on body weight and adiposity in obese mice. Scientific Reports. 10 (1), 9388 (2020).
  6. Zoll, J., et al. Fecal microbiota transplantation from high caloric-fed donors alters glucose metabolism in recipient mice, independently of adiposity or exercise status. American Journal of Physiology. Endocrinology and Metabolism. 319 (1), 203-216 (2020).
  7. Hvas, C. L., et al. Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent Clostridium difficile infection. Gastroenterology. 156 (5), 1324-1332 (2019).
  8. Kootte, R. S., et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metabolism. 26 (4), 611-619 (2017).
  9. Li, J., et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 5 (1), 14 (2017).
  10. Shi, H., et al. Restructuring the gut microbiota by intermittent fasting lowers blood pressure. Circulation Research. 128 (9), 1240-1254 (2021).
  11. Zhong, H. J., et al. Washed microbiota transplantation lowers blood pressure in patients with hypertension. Frontiers in Cellular and Infection Microbiology. 11, 679624 (2021).
  12. Ferguson, J. F., et al. High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight. 5 (13), 126241 (2019).
  13. Yu, E. W., et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Medicine. 17 (3), 1003051 (2020).
  14. Leong, K. S. W., et al. Effects of fecal microbiome transfer in adolescents with obesity: the gut bugs randomized controlled trial. JAMA Network Open. 3 (12), 2030415 (2020).
  15. Zhang, Z., et al. Impact of fecal microbiota transplantation on obesity and metabolic syndrome-a systematic review. Nutrients. 11 (10), 2291 (2019).
  16. Laubitz, D., et al. Dynamics of gut microbiota recovery after antibiotic exposure in young and old mice (a pilot study). Microorganisms. 9 (3), 647 (2021).
  17. Xiao, L., et al. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome. 5 (1), 43 (2017).
  18. Brunt, V. E., et al. Suppression of the gut microbiome ameliorates age-related arterial dysfunction and oxidative stress in mice. The Journal of Physiology. 597 (9), 2361-2378 (2019).
  19. Choo, J. M., Rogers, G. B. Gut microbiota transplantation for colonization of germ-free mice. STAR Protocols. 2 (3), 100610 (2021).
  20. Kim, T. T., et al. Fecal transplant from resveratrol-fed donors improves glycaemia and cardiovascular features of the metabolic syndrome in mice. American Journal of Physiology. Endocrinology and Metabolism. 315 (4), 511-519 (2018).
  21. Lu, H., et al. Subcutaneous angiotensin II infusion using osmotic pumps induces aortic aneurysms in mice. Journal of Visualized Experiments. (103), e53191 (2015).
  22. Wang, Y., Thatcher, S. E., Cassis, L. A. Measuring blood pressure using a noninvasive tail cuff method in mice. Methods in Molecular Biology. 1614, 69-73 (2017).
  23. Ishimwe, J. A., et al. The gut microbiota and short-chain fatty acids profile in postural orthostatic tachycardia syndrome. Frontiers in Physiology. 13, 879012 (2022).
  24. Bialkowska, A. B., Ghaleb, A. M., Nandan, M. O., Yang, V. W. Improved Swiss-rolling technique for intestinal tissue preparation for immunohistochemical and immunofluorescent analyses. Journal of Visualized Experiments. (113), e54161 (2016).
  25. Moolenbeek, C., Ruitenberg, E. J. The "Swiss roll": a simple technique for histological studies of the rodent intestine. Laboratory Animals. 15 (1), 57-59 (1981).
  26. Ishimwe, J. A., Garrett, M. R., Sasser, J. M. 1,3-Butanediol attenuates hypertension and suppresses kidney injury in female rats. American Journal of Physiology. Renal Physiology. 319 (1), 106-114 (2020).
  27. Bokoliya, S. C., Dorsett, Y., Panier, H., Zhou, Y. Procedures for fecal microbiota transplantation in murine microbiome studies. Frontiers in Cellular and Infection Microbiology. 11, 711055 (2021).
  28. Van Beusecum, J. P., Xiao, L., Barbaro, N. R., Patrick, D. M., Kirabo, A. Isolation and adoptive transfer of high salt treated antigen-presenting dendritic cells. Journal of Visualized Experiments. (145), e59124 (2019).
  29. Harrison, D. G., Marvar, P. J., Titze, J. M. Vascular inflammatory cells in hypertension. Frontiers in Physiology. 3, 128 (2012).
  30. Sylvester, M. A., et al. Splenocyte transfer from hypertensive donors eliminates premenopausal female protection from ANG II-induced hypertension. American Journal of Physiology. Renal Physiology. 322 (3), 245-257 (2022).
  31. Reikvam, D. H., et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS One. 6 (3), 17996 (2011).
  32. Le Roy, T., et al. Comparative evaluation of microbiota engraftment following fecal microbiota transfer in mice models: age, kinetic and microbial status matter. Frontiers in Microbiology. 9, 3289 (2019).
  33. Sun, J., et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Translation Psychiatry. 9 (1), 189 (2019).
  34. Kim, M., et al. Critical role for the microbiota in CX(3)CR1(+) intestinal mononuclear phagocyte regulation of intestinal T cell responses. Immunity. 49 (3), 151-163 (2018).
  35. Hintze, K. J., et al. Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer. Gut Microbes. 5 (2), 183-191 (2014).
  36. Wilde, E., et al. Tail-cuff technique and its influence on central blood pressure in the mouse. Journal of the American Heart Association. 6 (6), 005204 (2017).
  37. Liu, X., et al. High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell Metabolism. 33 (5), 923-938 (2021).
check_url/de/64310?article_type=t

Play Video

Diesen Artikel zitieren
Ishimwe, J. A., Zhong, J., Kon, V., Kirabo, A. Murine Fecal Isolation and Microbiota Transplantation. J. Vis. Exp. (195), e64310, doi:10.3791/64310 (2023).

View Video