Summary

激光对生物组织的修复孟加拉玫瑰红壳聚糖膜的制备及应用

Published: October 23, 2012
doi:

Summary

缝线在手术过程中,通常需要修复组织。然而,它们的应用可能是有问题的,因为它们是侵入性的,并且可能会损坏组织。新的组织粘合剂的制备及应用方法,在这里报道。该粘合膜的激光激活的,并且不需要使用缝线。

Abstract

光化学组织结合(PTB)是一种无缝合的组织修复的技术,这是实现通过施加一个解决办法,玫瑰红(RB)之间的两个组织的边缘1,2。然后这些被选择性地吸收由RB通过激光照射。据说所得的光化学反应交联,在组织中的胶原纤维与最小的热量生产3。在这份报告中,RB已成立于薄的壳聚糖膜制造一个新的组织粘合剂,是激光激活。基于脱乙酰壳多糖和含有〜0.1%(重量)RB,粘接膜,制造和粘接小牛肠和大鼠胫神经由固态激光器(λ= 532nm的,注量〜110焦耳/厘米2,光斑大小〜0.5厘米) 。一个单一的列的张力计,与个人计算机连接,用于测试的接合强度。 RB-壳聚糖粘合剂粘合牢固,肠强度为15±6千帕(N = 30)。的粘接强度下降到2± 2千帕(= 30)时,激光不施加到粘合剂。胫神经的吻合,也可以不使用的缝合线的情况下完成。一种新型的壳聚糖胶粘剂已债券光化学组织制造的,不需要缝合。

Protocol

1。壳聚糖黏胶剂脱乙酰壳多糖粉末溶解在乙酸溶液中,用于制备乙酸2%(体积/体积)的储备液,添加10毫升冰醋酸的490毫升去离子水(DI-H 2 O)。 如果在孟加拉玫瑰红(RB)在乙酸(0.01%重量/体积)的储备液的制备中,称量5毫克的RB的小瓶中,用铝箔包裹,以避免光漂白。 DI-H 2 O中加入0.5 ml溶解的粉末,然后加49.5毫升的醋酸原液(详见第1.1节)。 为了制?…

Discussion

玫瑰粘合剂制造是基于干铸在一个简单的过程,但在酸性pH条件下,需要延长的RB的溶解的脱乙酰壳多糖溶液中搅拌。这是重要的,让溶液干涸,直到它成为一个水不溶性膜。这种情况发生时的重量的水的含量为〜10%,在干燥的膜6。不溶性的膜通常是获得干铸造后2个星期,在标准条件下的温度和压力(〜25℃,1个大气压)。组织接合的机理尚未完全清楚,但有人指出,RB扩散从进入相邻?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

支持这项工作是由西悉尼大学研究资助。

Materials

Name of the reagent Company Catalogue number Comments (optional)
Rose Bengal Sigma-Aldrich 632-69-9
Chitosan (medium MW) Sigma-Aldrich 10318AJ
Glacial acetic acid Sigma-Aldrich 08050051 2% v/v in DI water
Magnetic stirrer Heidolph MR Hei-Mix S
Centrifuge Beckman Coulter Allegra X-12R
Spectrophotometer Varian Cary 4000 UV-Visible
Laser CNI Laser MGL-532
Micrometer Mitutoyo Series 227
Surgical microscope Zeiss OPMI

Referencias

  1. O’Neill, A. C., Winograd, J. M. Microvascular anastomosis using a photochemical tissue bonding technique. Lasers Surg. Med. 39, 716-722 (2007).
  2. Yao, M., Yaroslavsky, A. Phototoxicity is not associated with photochemical tissue bonding of skin. Lasers Surg. Med. 42, 123-131 (2010).
  3. Lauto, A., Mawad, D. Photochemical Tissue Bonding with Chitosan Adhesive Films. Biomedical Engineering OnLine. 9, 47 (2010).
  4. Chan, B. P., Kochevar, I. E. Enhancement of porcine skin graft adherence using a light-activated process. J. Surg. Res. 108, 77-84 (2002).
  5. Lauto, A., Faster, L. J. Sutureless nerve repair with laser-activated chitosan adhesive: a pilot in vivo study. Photomed. Laser Surg. 26, 227-234 (2008).
  6. Lauto, A., Hook, J. Chitosan adhesive for laser tissue repair: in vitro characterization. Lasers Surg. Med. 36, 193-201 (2005).
  7. Au, V., Madison, S. A. Effects of singlet oxygen on the extracellular matrix protein collagen: oxidation of the collagen crosslink histidinohydroxylysinonorleucine and histidine. Arch. Biochem. Biophys. 384, 133-142 (2000).
  8. Encinas, M. V., Rufs, A. M. Xanthene dyes/amine as photoinitiators of radical polymerization: A comparative and photochemical study in aqueous medium. Polymer. 13, 2762-2767 (2009).
  9. Pini, R., Rossi, F. A new technique for the closure of the lens capsule by laser welding. Ophtalmic Surgery Lasers & Imaging. 39, 260-2626 (2008).
  10. Wieken, K., Angioi-Duprez, K., Lim, A. Nerve anastomosis with glue: comparative histologic study of fibrin and cyanoacrylate glue. J. Reconstr. Microsurg. 19, 17-20 (2003).
  11. Menovsky, T., Beek, J. F. Laser, fibrin glue, or suture repair of peripheral nerves: a comparative functional, histological, and morphometric study in the rat sciatic nerve. J. Neurosurg. 95, 694-699 (2001).
  12. García, P., Jorge, H. E. Comparative study of the mechanical behavior of a cyanoacrylate and a bioadhesive. J. Mater. Sci. Mater. Med. 15, 109-115 (2004).
  13. Lauto, A. Integration of extracellular matrix with chitosan adhesive film for sutureless tissue fixation. Lasers Surg. Med. 41, 366-371 (2009).
check_url/es/4158?article_type=t

Play Video

Citar este artículo
Lauto, A., Stoodley, M., Barton, M., Morley, J. W., Mahns, D. A., Longo, L., Mawad, D. Fabrication and Application of Rose Bengal-chitosan Films in Laser Tissue Repair. J. Vis. Exp. (68), e4158, doi:10.3791/4158 (2012).

View Video