Summary

Misura della durata della vita in<em> Drosophila melanogaster</em

Published: January 07, 2013
doi:

Summary

Drosophila melanogaster è un organismo modello potente per esplorare le basi molecolari della regolazione longevità. Questo protocollo discuterà i passaggi necessari per generare una riproducibile, basato sulla popolazione, la misurazione della longevità e gli eventuali rischi potenziali e come evitarli.

Abstract

L'invecchiamento è un fenomeno che si traduce in costante deterioramento fisiologico in quasi tutti gli organismi in cui è stato esaminato, con conseguente riduzione delle prestazioni fisiche e aumento del rischio di malattia. Invecchiamento individuale si manifesta a livello di popolazione, come un aumento della mortalità età-dipendente, che viene spesso misurata in laboratorio osservando la durata della vita in ampie coorti di individui di pari età. Gli esperimenti che cercano di quantificare la misura in cui le manipolazioni genetiche o ambientali impatto durata della vita in organismi modello semplici hanno riscosso un notevole successo per la comprensione degli aspetti dell'invecchiamento che si conservano in taxa e per ispirare nuove strategie per estendere la durata della vita e la prevenzione della malattia associata all'età nei mammiferi .

La mosca dell'aceto, Drosophila melanogaster, è un organismo modello attraente per lo studio dei meccanismi di invecchiamento a causa della sua relativamente breve vita, allevamento conveniente, e la genetica facili.Tuttavia, le misure demografiche di invecchiamento, tra cui l'età-specifica e la mortalità, sono straordinariamente sensibili a variazioni anche minime nel disegno sperimentale e l'ambiente, e il mantenimento di pratiche di laboratorio rigorose per tutta la durata degli esperimenti di invecchiamento è richiesto. Queste considerazioni, insieme con la necessità di praticare un attento controllo dei background genetico, sono essenziali per la generazione di misure robuste. In effetti, ci sono molte controversie notevoli circondano inferenza da esperimenti longevità in lievito, vermi, mosche e topi che sono stati tracciati di artefatti ambientali o genetici 1-4. In questo protocollo, si descrive una serie di procedure che sono stati ottimizzati per molti anni per misurare la longevità in Drosophila con fiale di laboratorio. Abbiamo anche descrivere l'uso del software dLife, che è stato sviluppato dal nostro laboratorio ed è disponibile per il download ( http://sitemaker.umich.edu/pletcherlab / software). dLife accelera la produttività e promuovere le buone pratiche, integrando design ottimale sperimentale, semplificare la gestione e la raccolta dei dati mosca, e la standardizzazione delle analisi dei dati. Discuteremo anche le numerose insidie ​​potenziali nella progettazione, raccolta e interpretazione dei dati di durata della vita, e mettiamo a disposizione misure per evitare questi pericoli.

Protocol

Si consiglia la conservazione di alimenti, pasta di lievito sperimentali, e piastre di agar uva che appaiono nel protocollo a 4 ° C e il loro utilizzo entro 1-2 mesi fino a quando la muffa e l'aridità non sono impostare in condizioni ambientali standard sia per la larve e adulti fase di manutenzione comportano mosche in un incubatore a 25 ° C con un ciclo luce 12:12 hr scuro e 60% di umidità relativa. 1. Preparazione di alimenti Sperimentale Per la crescita delle larve, si…

Representative Results

Uno schema semplificato del protocollo viene presentata in figura 1, dove sono riportate passaggi chiave. La parte del protocollo di sincronizzazione può essere utilizzato per vari metodi che richiedono mosche adulte pari età. Curve di sopravvivenza tipiche di wild-type mosche sono mostrati in figura 2a, utilizzando il software di gestione dLife esperimento (Figura 2b, c). Maschi adulti di solito vivono più breve, con entrambe le popolazi…

Discussion

Il protocollo qui presentato descrive un metodo per produrre misurazioni riproducibili di longevità adulto in Drosophila che è adattabile per la valutazione di interventi farmacologici, genetici e ambientali. Aspetti cruciali del protocollo includono controllando attentamente l'ambiente di sviluppo larvale, riducendo al minimo lo stress degli adulti, e riducendo al minimo polarizzazione tra gruppi sperimentali e di controllo. Presentiamo anche l'utilizzo del software di gestione dell'esperimento d…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

Questo lavoro è stato sostenuto da un finanziamento della Fondazione Ellison Medical (SDP, http://www.ellisonfoundation.org/index.jsp ), NIH K01AG031917 (NJL, http://www.nih.gov/ ), NIH 5T32GM007315-35 (JR) e NIH R01AG030593 (SDP). Questo lavoro ha utilizzato le risorse del Aging Drosophila Core (DAC) del Centro di Eccellenza Nathan Shock nella biologia dell'invecchiamento finanziato dal National Institute of Aging P30-AG-013283 ( http://www.nih.gov/ ). Gli autori desiderano ringraziare il Laboratorio Pletcher per le discussioni utili e, in particolare Brian Chung per la lettura critica del manoscritto. Si desidera ringraziare Nick Asher e Kathryn Borowicz per l'assistenza con la raccolta dei dati.

Materials

Name of the reagent Company Catalogue number Comments (optional)
Active Dry Yeast Fleishmann’s Yeast 2192  
Grape Agar Powder Premix Genesee Scientific 47-102  
Large Embryo Collection Cages Genesee Scientific 59-101  
Large Replacement End Caps Genesee Scientific 59-103  
6 oz Square Bottom Bottles, polypropylene Genesee Scientific 32-130  
Flugs Closures for Stock Bottles Genesee Scientific 49-100  
Drosophila Vials, Wide, Polystrene Genesee Scientific 32-117  
Flugs Closures for Wide Vials Genesee Scientific 49-101  
Wide Orifice Aardvark Pipet Tips, 200 ul Denville Scientific P1105-CP  
Flystuff Flypad, Standard Size Genesee Scientific 59-114  
BD Falcon 15 ml Conical Centrifuge Tubes Fisher Scientific 14-959-70C  
Fisherbrand Petri Dishes with Clear Lids, Raised Ridge; 100 O.D. x 15 mm H; Fisher Scientific 08-757-12  
Kimax* Colorware Flasks 1,000 ml yellow Fisher Scientific 10-200-47  
PBS pH 7.4 10x Invitrogen 70011044  
Gelidium Agar Mooragar n/a  
Brewer’s Yeast MP Biomedicals 0290331280  
Granulated Sugar Kroger n/a  
Tegosept Genesee Scientific 20-266 Fly Food Preservative
Propionic Acid, 99% Acros Organics 149300025 Fly Food Preservative
Kanamycin Sulfate ISC BioExpress 0408-10G  
Tetracycline HCl VWR 80058-724  

Referencias

  1. Toivonen, J. M., et al. No influence of Indy on lifespan in Drosophila after correction for genetic and cytoplasmic background effects. PLoS Genet. 3, e95 (2007).
  2. Spencer, C. C., Howell, C. E., Wright, A. R., Promislow, D. E. Testing an ‘aging gene’ in long-lived drosophila strains: increased longevity depends on sex and genetic background. Aging Cell. 2, 123-130 (2003).
  3. Burnett, C., et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 477, 482-485 (2011).
  4. Bokov, A. F., et al. Does reduced IGF-1R signaling in Igf1r+/- mice alter aging?. PLoS One. 6, e26891 (2011).
  5. Lewis, E. B. A new standard food medium. Drosophila Information Service. 34, 117-118 (1960).
  6. Skorupa, D. A., Dervisefendic, A., Zwiener, J., Pletcher, S. D. Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell. 7, 478-490 (2008).
  7. Rera, M., et al. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 14, 623-634 (2011).
  8. Kaplan, E. L., Meier, P. Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association. 53, 457-481 (1958).
  9. Pletcher, S. D. Mitigating the Tithonus Error: Genetic Analysis of Mortality Phenotypes. Sci. Aging Knowl. Environ. 2002, pe14 (2002).
  10. Pletcher, S. D., Khazaeli, A. A., Curtsinger, J. W. Why do life spans differ? Partitioning mean longevity differences in terms of age-specific mortality parameters. J. Gerontol. A Biol. Sci. Med. Sci. 55, 381-389 (2000).
  11. Promislow, , Tatar, , Pletcher, , Carey, Below-threshold mortality: implications for studies in evolution, ecology and demography. Journal of Evolutionary Biology. 12, 314-328 (1999).
  12. Pletcher, Model fitting and hypothesis testing for age-specific mortality data. Journal of Evolutionary Biology. 12, 430-439 (1999).
  13. Partridge, L., Gems, D. Benchmarks for ageing studies. Nature. 450, 165-167 (2007).
  14. Roman, G., Endo, K., Zong, L., Davis, R. L. P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America. 98, 12602-12607 (2001).
  15. Ford, D., et al. Alteration of Drosophila life span using conditional, tissue-specific expression of transgenes triggered by doxycyline or RU486/Mifepristone. Exp. Gerontol. 42, 483-497 (2007).
  16. Priest, N. K., Mackowiak, B., Promislow, D. E. The role of parental age effects on the evolution of aging. Evolution. 56, 927-935 (2002).
  17. Smith, E. M., et al. Feeding Drosophila a biotin-deficient diet for multiple generations increases stress resistance and lifespan and alters gene expression and histone biotinylation patterns. J. Nutr. 137, 2006-2012 (2007).
  18. Sorensen, J. G., Loeschcke, V. Larval crowding in Drosophila melanogaster induces Hsp70 expression, and leads to increased adult longevity and adult thermal stress resistance. J. Insect Physiol. 47, 1301-1307 (2001).
  19. Bass, T. M., et al. Optimization of dietary restriction protocols in Drosophila. J. Gerontol. A Biol. Sci. Med. Sci. 62, 1071-1081 (2007).
  20. Miquel, J., Lundgren, P. R., Bensch, K. G., Atlan, H. Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mechanisms of Ageing and Development. 5, 347-370 (1976).
  21. Pittendrigh, C. S., Minis, D. H. Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America. 69, 1537-1539 (1972).
  22. Joshi, A., Mueller, L. D. Adult crowding effects on longevity in Drosophila melanogaster: Increase in age-dependent mortality. Current Science. 72, 255-260 (1997).
  23. Ja, W. W., et al. Prandiology of Drosophila and the CAFE assay. Proceedings of the National Academy of Sciences of the United States of America. 104, 8253-8256 (2007).
  24. Lee, K. P., et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proceedings of the National Academy of Sciences of the United States of America. 105, 2498-2503 (2008).
  25. Gargano, J. W., Martin, I., Bhandari, P., Grotewiel, M. S. Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Experimental gerontology. 40, 386-395 (2005).
check_url/es/50068?article_type=t

Play Video

Citar este artículo
Linford, N. J., Bilgir, C., Ro, J., Pletcher, S. D. Measurement of Lifespan in Drosophila melanogaster. J. Vis. Exp. (71), e50068, doi:10.3791/50068 (2013).

View Video