Summary

心脏压力容量环分析小鼠使用电导导管

Published: September 17, 2015
doi:

Summary

Cardiac pressure-volume loop analysis is the most comprehensive way to measure cardiac function in the intact heart. We describe a technique to perform and analyze cardiac pressure volume loops, using conductance catheters.

Abstract

Cardiac pressure-volume loop analysis is the “gold-standard” in the assessment of load-dependent and load-independent measures of ventricular systolic and diastolic function. Measures of ventricular contractility and compliance are obtained through examination of cardiac response to changes in afterload and preload. These techniques were originally developed nearly three decades ago to measure cardiac function in large mammals and humans. The application of these analyses to small mammals, such as mice, has been accomplished through the optimization of microsurgical techniques and creation of conductance catheters. Conductance catheters allow for estimation of the blood pool by exploiting the relationship between electrical conductance and volume. When properly performed, these techniques allow for testing of cardiac function in genetic mutant mouse models or in drug treatment studies. The accuracy and precision of these studies are dependent on careful attention to the calibration of instruments, systematic conduct of hemodynamic measurements and data analyses. We will review the methods of conducting pressure-volume loop experiments using a conductance catheter in mice.

Introduction

心脏压力容积环分析提供心脏功能的详细信息,其中的金标准功能评估1。虽然诸如超声心动图或心脏MRI成像技术提供的功能的措施,这些措施在很大程度上取决于负载条件。心脏收缩和舒张的负载独立的措施需要心室压力和体积的关系在一定范围内的前后负荷的动态测量。压力容积关系的这种认识源于佐川急便和同事2,3的开创性工作。他们在体外灌注犬心脏表明,压力容积环衍生收缩措施是独立的负载条件4。

在这些分析的体内应用成为可能的传导导管在20世纪80年代的发展。这使得嘉的技术进步SS和他的同事进行的人类5,6压力-容积环分析。电导导管和改进手术技术在上世纪90年代7小型化由啮齿类动物心脏功能分析是可行的,允许遗传和药理学研究被执行。这一进步此后引发广泛使用的压力容积环分析,并产生了大量的洞察哺乳动物心脏生理。

在使用电导导管,并从中获得的数据的解释的一个关键概念是体积和电导之间的关系。电导是负相关的电压,这是使用与近侧放置电极,通常放在下面的主动脉瓣,和远侧,在LV尖8的导管测量。被改变电压或电导的变化电流从近端到远端电极的测量。虽然血池贡献š显著电导,心室壁的贡献,称为并联电导(V p)的 ,以测得的电导必须减去,以获得绝对的LV体积测量。

所述的方法来执行此校正,称为盐水校准,在下面的协议进行了讨论。电导和体积之间的数学关系,由班和同事描述的是体积= 1 /α; (ρL 2)(GG p),其中 α=均匀的场校正系数,ρ=电阻率血液,L为电极之间的距离,G =电导 G p值=非血液电导9。值得注意的是,在小鼠的统一场校正系数接近1.0,由于小室容积10。再加上压力传感器,电导导管提供实时同步的压力和体积数据。

心脏PRESSU再卷分析呈现特别优势的心脏功能的其他措施,因为它们允许用于心室功能独立的负载条件和心脏速率的测量。收缩的具体负载无关的心脏指标包括:收缩末期压力容积关系(ESPVR),D P / D T最大末端舒张末期容积关系,最大顺应性(E max)和预加载recruitable工作行程(PRSW)。舒张功能的负载无关的指标是舒张末期压力容积关系(EDPVR)11。以下协议描述心脏的压力容积环分析的行为,同时使用一个颈动脉和顶部的方法。虽然进行这些研究的方法进行了详细先前8,11进行了说明,我们将审查的关键步骤,以获得精确的压力容积测量,包括盐水和试管校准修正,并提供THES的可视化演示Ë程序。研究与开展这项研究的动物按批准的方案和杜克大学医学中心的机构动物护理和使用委员会的动物福利法规进行处理。

Protocol

1.电导导管准备和压力校准电导导管连接至血流动力学导管模块。电子校准压力和体积测量通过记录预设的压力和体积的导管模块上设置。记录0毫米汞柱和25毫米汞柱(图1A)一个跟踪和分配的电压到两个压力描记(图1B 和1C)。同样地,记录5 RVU和25 RVU(图1D)的体积跟踪和分配的电压到两个体积描记(1E和1F)。 确认与手动压力校…

Representative Results

压力-容积环分析可以用于测量在基因修饰的小鼠14,15或小鼠接受药物研究16心脏功能。代表压力容积环是由以前发表的著作16提供的调查β-arrestin的效果偏向AT1受体配体,TRV120023。为了测试TRV120023是否影响在体内的心脏功能,在接收到传统的和新颖的血管紧张素受体 ​​阻滞剂的野生型小鼠中进行压力-容积环分析。 TRV120023静脉滴注增强心肌收缩显著(</…

Discussion

我们描述了使用小鼠电导导管,以获得两个心脏收缩和舒张的综合分析perfoming压力 – 容积环分析的方法。菅佐川急便和他 ​​的同事利用压力容积循环,以确定心脏收缩的措施,在ESPVR专门的坡度,或收缩末期弹性(E ES)和E 最大 。顺应性,通过压力的比率定义为体积(P / V),上变化收缩的持续时间。在每个心脏收缩,瞬时弹性度是依赖于心脏速率和心肌收缩力,但在很大程度…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国心脏协会14FTF20370058(DMA)和美国国立卫生研究院T32 HL007101-35(DMA)的支持。

Materials

AnaSed (xylazine)  Lloyd Laboratories NADA no. 139-236 Anesthetic
Ketaset (ketamine) Pfizer 440842 Anesthetic
VIP3000 Matrx Medical Inc. Anesthesia machine
Ventilator Harvard Apparatus Model 683 Surgical Equipment
Tubing kit Harvard Apparatus 72-1049 Surgical Equipment
Homeothermic Blanket  Kaz Inc. 5628 Surgical Equipment
Stereo microscope Carl Zeiss Optical Inc. Stemi 2000 Surgical Equipment
Illuminator Cole–Parmer 41720 Surgical Equipment
Dumont no. 55 Dumostar Forceps  Fine Science Tools Inc 11295-51 Surgical Instruments
Graefe forceps, curved  Fine Science Tools Inc 11052-10 Surgical Instruments
Moria MC31 forceps  Fine Science Tools Inc 11370-31 Surgical Instruments
Mayo scissors  Fine Science Tools Inc 14512-15 Surgical Instruments
Iris scissors  Fine Science Tools Inc 14041-10 Surgical Instruments
Halsey needle holder  Fine Science Tools Inc 12501-13 Surgical Instruments
Olsen–Hegar needle holder  Fine Science Tools Inc 12002-12 Surgical Instruments
spring scissors Fine Science Tools Inc 15610-08 Surgical Instruments
disposable underpads Kendall/Tyco Healthcare 1038 Surgical Supplies
Sterile gauze sponges, sterile  Dukal 62208 Surgical Supplies
Cotton-tipped applicators, sterile  Solon 368 Surgical Supplies
Surgical suture,  silk, 6-0  DemeTECH FT-639-1 Surgical Supplies
1 cc Insulin syringes  Becton Dickenson 329412 Surgical Supplies
Access-9™ Hemostasis Valve Merit Medical  MAP111 Hemodynamic equipment
Sphygmomanometer Baumanometer 320 Hemodynamic equipment
Millar PV system MPVS-300/400 or MPVS Ultra (includes calibration cuvette) ADInstruments Inc Hemodynamic equipment
1.4F conductance catheter  ADInstruments Inc SPR-839 Hemodynamic equipment
PowerLab 4/30 with Chart Pro ADInstruments Inc. ML866/P Hemodynamic software
animal clipper Wahl 8787-450A Miscellaneous
Intradermic tubing PE-10 (Becton Dickinson, cat. no. ) Becton Dickenson 427401 Miscellaneous
Intradermic tubing PE-50 (Becton Dickinson, cat. no.) Becton Dickenson 427411 Miscellaneous
Needle assortment (18, 25 and 30 gauge; Thomas Scientific) Miscellaneous
0.9% (wt/vol) sodium chloride injection, USP , cat. no. ) Hospira NDC no. 0409-4888-50 Miscellaneous
Surgical tape Miscellaneous
Alconox (Alconox Inc.) for catheter cleaning ADInstruments Inc. Miscellaneous

Referencias

  1. Clark, J. E., Marber, M. S. Advancements in pressure-volume catheter technology – stress remodelling after infarction. Exp Physiol. 98 (3), 614-621 (2013).
  2. Sunagawa, K., Maughan, W. L., Burkhoff, D., Sagawa, K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 245 (Pt 1), H773-H780 (1983).
  3. Suga, H., Sagawa, K., Demer, L. Determinants of instantaneous pressure in canine left ventricle. Time and volume specification. Circ Res. 46 (2), 256-263 (1980).
  4. Suga, H., Sagawa, K., Shoukas, A. A. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 32 (3), 314-322 (1973).
  5. Kass, D. A., et al. Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. Circulation. 99 (12), 1567-1573 (1999).
  6. Kass, D. A., et al. Diastolic Compliance of Hypertrophied Ventricle Is Not Acutely Altered by Pharmacological Agents Influencing Active Processes. Annals of Internal Medicine. 119 (6), 466-473 (1993).
  7. Georgakopoulos, D., et al. In vivo murine left ventricular pressure-volume relations by miniaturized conductance micromanometry. Am J Physiol. 274 (4 pt 2), H1416-H1422 (1998).
  8. Cingolani, O. H., Kass, D. A. Pressure-volume relation analysis of mouse ventricular function. Am J Physiol Heart Circ Physiol. 301 (6), H2198-H2206 (2011).
  9. Baan, J., et al. Continuous Measurement of Left-Ventricular Volume in Animals and Humans by Conductance Catheter. Circulation. 70 (5), 812-823 (1984).
  10. Pearce, J. A., Porterfield, J. E., Larson, E. R., Valvano, J. W., Feldman, M. D. Accuracy considerations in catheter based estimation of left ventricular volume. Conf Proc IEEE Eng Med Biol Soc. 2010, 3556-3558 (2010).
  11. Pacher, P., Nagayama, T., Mukhopadhyay, P., Batkai, S., Kass, D. A. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nature Protocols. 3 (9), 1422-1434 (1038).
  12. Hanusch, C., Hoeger, S., Beck, G. C. Anaesthesia of small rodents during magnetic resonance imaging. Methods. 43 (1), 68-78 (2007).
  13. Georgakopoulos, D., Kass, D. A. Estimation of parallel conductance by dual-frequency conductance catheter in mice. Am J Physiol Heart Circ Physiol. 279 (1), H443-H450 (2000).
  14. Esposito, G., et al. Increased myocardial contractility and enhanced exercise function in transgenic mice overexpressing either adenylyl cyclase 5 or 8. Basic Res Cardiol. 103 (1), 22-30 (2008).
  15. Kohout, T. A., et al. Augmentation of cardiac contractility mediated by the human beta(3)-adrenergic receptor overexpressed in the hearts of transgenic mice. Circulation. 104 (20), 2485-2491 (2001).
  16. Kim, K. S., et al. beta-Arrestin-biased AT1R stimulation promotes cell survival during acute cardiac injury. Am J Physiol Heart Circ Physiol. 303 (8), H1001-H1010 (2012).
  17. Suga, H., Sagawa, K. Mathematical Interrelationship between Instantaneous Ventricular Pressure-Volume Ratio and Myocardial Force-Velocity Relation. Annals of Biomedical Engineering. 1 (2), 160-181 (1972).
  18. Suga, H. Ventricular energetics. Physiol Rev. 70 (2), 247-277 (1990).
  19. Kass, D. A., et al. Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations. Circulation. 79 (1), 167-178 (1989).
  20. Little, W. C. The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs. Circ Res. 56 (6), 808-815 (1985).
  21. Glower, D. D., et al. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation. 71 (5), 994-1009 (1985).
  22. Sharir, T., et al. Ventricular systolic assessment in patients with dilated cardiomyopathy by preload-adjusted maximal power. Validation and noninvasive application. Circulation. 89 (5), 2045-2053 (1994).
  23. Baan, J., Van der Velde, E. T. Sensitivity of left ventricular end-systolic pressure-volume relation to type of loading intervention in dogs. Circ Res. 62 (6), 1247-1258 (1988).
  24. Wei, C. L., et al. Volume catheter parallel conductance varies between end-systole and end-diastole. IEEE Trans Biomed Eng. 54 (8), 1480-1489 (2007).
  25. Porterfield, J. E., et al. Dynamic correction for parallel conductance, GP, and gain factor, alpha, in invasive murine left ventricular volume measurements. J Appl Physiol (1985). 107 (6), 1693-1703 (2009).

Play Video

Citar este artículo
Abraham, D., Mao, L. Cardiac Pressure-Volume Loop Analysis Using Conductance Catheters in Mice. J. Vis. Exp. (103), e52942, doi:10.3791/52942 (2015).

View Video