Summary

Microfluidic genipina Deposizione Tecnica per la cultura estesa di micropatterned vascolari muscolari Thin Films

Published: June 26, 2015
doi:

Summary

We present a method for microfluidic deposition of patterned genipin and fibronectin on PDMS substrates, allowing extended viability of vascular smooth muscle cell-dense tissues. This tissue fabrication method is combined with previous vascular muscular thin film technology to measure vascular contractility over disease-relevant time courses.

Abstract

The chronic nature of vascular disease progression requires the development of experimental techniques that simulate physiologic and pathologic vascular behaviors on disease-relevant time scales. Previously, microcontact printing has been used to fabricate two-dimensional functional arterial mimics through patterning of extracellular matrix protein as guidance cues for tissue organization. Vascular muscular thin films utilized these mimics to assess functional contractility. However, the microcontact printing fabrication technique used typically incorporates hydrophobic PDMS substrates. As the tissue turns over the underlying extracellular matrix, new proteins must undergo a conformational change or denaturing in order to expose hydrophobic amino acid residues to the hydrophobic PDMS surfaces for attachment, resulting in altered matrix protein bioactivity, delamination, and death of the tissues.

Here, we present a microfluidic deposition technique for patterning of the crosslinker compound genipin. Genipin serves as an intermediary between patterned tissues and PDMS substrates, allowing cells to deposit newly-synthesized extracellular matrix protein onto a more hydrophilic surface and remain attached to the PDMS substrates. We also show that extracellular matrix proteins can be patterned directly onto deposited genipin, allowing dictation of engineered tissue structure. Tissues fabricated with this technique show high fidelity in both structural alignment and contractile function of vascular smooth muscle tissue in a vascular muscular thin film model. This technique can be extended using other cell types and provides the framework for future study of chronic tissue- and organ-level functionality.

Introduction

Malattie vascolari, come il vasospasmo cerebrale 1,2, ipertensione 3, 4 e aterosclerosi, si sviluppano lentamente, sono tipicamente di natura cronica, e coinvolgere disfunzionale forza-generazione da parte delle cellule muscolari lisce vascolari (VSMC). Il nostro obiettivo è di studiare queste disfunzioni vascolari lenta progressione che utilizzano metodi in vitro con un controllo più preciso delle condizioni sperimentali rispetto ai modelli in vivo. Film Abbiamo già sviluppato vascolari muscolari sottili (vMTFs) per la misurazione della contrattilità funzionale in vitro progettati tessuti cardiovascolari 5, ma questo metodo è stata limitata a relativamente studi a breve termine. Qui vi presentiamo una tecnica modifica substrato che espande la nostra precedente tecnica vMTF per misure a lungo termine.

Mentre l'endotelio è fondamentale anche in funzione vascolare generale, lamelle arteriosa progettato fornire un sistema modello utile per valutare i cambiamenti in vascolarecontrattilità durante la progressione della malattia. Per progettare un modello di tessuto malattia vascolare funzionale, sia la struttura e la funzione della lamella arteriosa, l'unità contrattile base del recipiente, deve essere riassunta con alta fedeltà. Arteriosa lamelle sono concentrici, fogli circonferenzialmente allineati di VSMC contrattili separati da fogli di elastina 6. Stampa microcontact di matrice extracellulare (ECM) proteine ​​su polidimetilsilossano (PDMS) substrati è stata precedentemente utilizzata per fornire spunti di orientamento per l'organizzazione dei tessuti di imitare allineato tessuto cardiovascolare 5,7-10. Tuttavia, i tessuti modellati utilizzando la stampa microcontact può perdere integrità dopo 3-4 giorni di cultura, limitando la loro applicabilità in studi cronici. Questo protocollo fornisce una soluzione a questo problema, sostituendo tecniche di stampa microcontact precedenti con una nuova tecnica di deposizione microfluidica.

Modificati PDMS substrati con genipina e f Genchi et al.ound prolungata sopravvivenza dei miociti fino a un mese di cultura 11. Qui, usiamo un approccio simile per estendere la cultura delle cellule muscolari lisce vascolari modellate su PDMS. Genipina, un derivato idrolitica naturale della frutta gardenia, è un candidato desiderabile per la modifica del substrato a causa della sua tossicità relativamente bassa rispetto ad agenti reticolanti simili e il suo uso crescente come biomateriale nel campo della riparazione tissutale 12,13 e ECM modifica 14, 15. In questo protocollo, la fibronectina è utilizzata come spunto di orientamento delle cellule, come in metodi di stampa microcontact precedenti; tuttavia, genipina viene depositata su PDMS substrati prima della fibronectina patterning. Così, come le cellule si degradano la matrice fantasia, ECM di nuova sintesi di VSMC collegati può legarsi al substrato PDMS genipina rivestite.

Questo protocollo utilizza un dispositivo di somministrazione microfluidica per due fasi genipina e ECM deposizione. Il design della microfluidica imita dispositivo microcomodelli di stampa ntact utilizzati per lamelle arteriosa progettato in studi precedenti 16. Quindi, ci aspettiamo che questo protocollo di cedere imita lamelle arteriosa che ricapitolano successo altamente allineato per struttura vivo e la funzione contrattile del lamelle arteriosa. Si valutano anche contrattilità tessuto per confermare che genipina è un composto modifica substrato adatto a lungo termine in vitro modelli di malattia vascolare.

Protocol

Nota: L'obiettivo di questo protocollo è quello di costruire e utilizzare un film vascolare muscolare sottile (vMTF) con la struttura mostrata in Figura 1 per valutare la contrattilità durante la coltura prolungata delle cellule muscolari lisce vascolari (VSMC) su PDMS substrati. Per prolungare la vitalità VSMC, utilizziamo il genipina composto reticolante. I substrati per questi vMTFs sono progettati per analizzare contrattilità tessuto sviluppato da Grosberg et al. 8 Metodi…

Representative Results

L'obiettivo principale di questo lavoro è stato quello di estendere la validità di VSMCs micropatterned su PDMS idrofobiche substrati. Ciò è stato realizzato incorporando un sistema di consegna microfluidico depositare genipina modellata e fibronectina su PDMS (Figura 1). Deposizione di proteine ​​ECM utilizzando l'invio microfluidica prodotto alto trasferimento fedeltà del modello di canale con PDMS nude tra le linee di genipina e fibronectina (Figura 1D). Le cellule a…

Discussion

Qui, vi presentiamo un protocollo che si basa sulla tecnologia vMTF precedentemente sviluppato, consentendo tempi prolungati esperimento più tipico dei percorsi croniche malattie vascolari 1,23,24. Per realizzare ciò, si micropattern genipina, che è stato precedentemente dimostrato di fornire funzionalizzazione a lungo termine di substrati PDMS 11, utilizzando una tecnica di deposizione microfluidi cedere lamelle arteriosa progettato con migliorata viabilità tessuto vascolare per esperimenti co…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

We acknowledge financial support from the American Heart Association Scientist Development Grant, 13SDG14670062 (PWA) and the University of Minnesota Doctoral Dissertation Fellowship (ESH). We also acknowledge the microfabrication resources of the Minnesota Nano Center (MNC) and the image processing resources of the University Imaging Centers (UIC), both at the University of Minnesota. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRS program.

Materials

Coverslip staining rack Electron Microscopy Sciences www.emsdiasum.com/ 72239-04 Alternative coverslip rack may be used
Microscope cover glass – 25 mm Fisher Scientific, Inc. www.fishersci.com 12-545-102 Alternative brand and size may be used; Microscope slides may also be substituted as substrate base
Poly(N-iso-propylacrylamide) (PIPAAm) Polysciences, Inc. www.polysciences.com/ #21458 Sigma-Aldrich makes an alternate compound, but we have not tested it for use with this protocol; Compound gives strong odor, use proper ventilation
1-butanol Sigma-Aldrich www.sigmaaldrich.com 360465 Hazard: flammable (store stock solution in flammable cabinet); flash point is 37 °C, avoid heating; alternative product may be used
Spincoater Specialty Coating Systems, Inc. www.scscoatings.com SCS G3P8 Model; Alternative brand and/or model may be used
Polydimethylsiloxane (PDMS) Ellsworth Adhesives (Dow Corning) www.ellsworth.com 184 SIL ELAST KIT 0.5KG Alternative distributor may be used
Fluorescent microbeads Polysciences, Inc. www.polysciences.com/ 17151 Alternative brand and/or larger size may be used
Silicon wafers Wafer World, Inc. www.waferworld.com 2398 Alternative brand and/or size may be used
Photoresist  MicroChem Corp. www.microchem.com SU-8 3025 allows 20-25-µm feature height
Contact mask aligner Suss MicroTec www.suss.com MA6 contact mask aligner; alternative brand and/or model may be used for wafer exposure
Developer MicroChem Corp. www.microchem.com SU-8 Developer; Hazard: flammable
Tridecafluro-trichlorosilane UCT Specialties, Inc. www.unitedchem.com T2492 Silane for non-stick coating of patterned silicon wafers (CAUTION: Tridecafluro-trichlorosilane is a flammable and corrosive liquid. Proper personal protective equipment and local exhaust is necessary for use. )
Surgical biopsy punch Integra LifeSciences Corp. www.miltex.com 33-31AA-P/25 Alternative brand and/or size may be used
Genipin Cayman Chemical www.caymanchem.com 10010622 Sigma-Aldrich (G4796-25MG) makes an alternate compound, but we have not tested it for use with this protocol
1X phosphate buffered saline Mediatech, Inc. www.cellgro.com 21-031-CV Alternative brand may be used
Fibronectin Corning, Inc. www.corning.com 356008 Sigma-Aldrich (F1056) makes an alternate compound, but we have not tested it for use with this protocol
Penicillin/streptomycin Life Technologies, Inc. www.lifetechnologies.com 15140-122 Alternative brand and/or size may be used, as long as concentration is the same
Umbillical artery smooth muscle cells Lonza www.lonza.com CC-2579 Alternative cell types may be used for alternative applications. Media should be modified accordingly
Tyrode's solution components Sigma-Aldrich www.sigmaaldrich.com various Alternative brand may be used for mixing solution
Stereomicroscope Zeiss www.zeiss.com 4350020000000000 SteREOLumar V12; Alternative brand/type of stereomicroscope may be used
Temperature-controlled platform Warner Instruments www.warneronline.com 641659; 640352; 641922
Endothelin-1 Sigma-Aldrich www.sigmaaldrich.com E7764-50UG Alternative amount may be purchased, as long as treatment concentration is maintained
HA-1077 Sigma-Aldrich www.sigmaaldrich.com H139-10MG Alternative amount may be purchased, as long as treatment concentration is maintained

Referencias

  1. Humphrey, J. D., Baek, S., Niklason, L. E. Biochemomechanics of cerebral vasospasm and its resolution: I. A new hypothesis and theoretical framework. Ann. Biomed. Eng. 35, 1485-1497 (2007).
  2. Hald, E. S., Alford, P. W. Smooth muscle phenotype switching in blast traumatic brain injury-induced cerebral vasospasm. Transl. Stroke Res. 5, 385-393 (2014).
  3. Olivetti, G., Anversa, P., Melissari, M., Loud, A. V. Morphometry of medial hypertrophy in the rat thoracic aorta. Lab. Invest. 42, 559-565 (1980).
  4. , Atherosclerosis. Nature. 407, 233-241 (2000).
  5. Alford, P. W., Feinberg, A. W., Sheehy, S. P., Parker, K. K. Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials. 31, 3613-3621 (2010).
  6. Rhodin, J. A. G., ed, B. e. r. n. e. ,. R. .. ,. Architecture of the vessel wall. Physiol. Rev. , (1979).
  7. Balachandran, K., et al. Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proc. Natl. Acad. Sci. U. S. A. 108, 19943-19948 (2011).
  8. Grosberg, A., Alford, P. W., McCain, M. L., Parker, K. K. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. 11, 4165-4173 (2011).
  9. Alford, P. W., Nesmith, A. P., Seywerd, J. N., Grosberg, A., Parker, K. K. Vascular smooth muscle contractility depends on cell shape. Integr. Biol. (Camb). 3, 1063-1070 (2011).
  10. Win, Z., et al. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility). Integr. Biol. (Camb). , (2014).
  11. Genchi, G. G., et al. Bio/non-bio interfaces: a straightforward method for obtaining long term PDMS/muscle cell biohybrid constructs). Colloid Surface B. 105, 144-151 (2013).
  12. Fessel, G., Cadby, J., Wunderli, S., van Weeren, R., Snedeker, J. G. Dose- and time-dependent effects of genipin crosslinking on cell viability and tissue mechanics – Toward clinical application for tendon repair. Acta Biomater. , (2013).
  13. Lima, E. G., et al. Genipin enhances the mechanical properties of tissue-engineered cartilage and protects against inflammatory degradation when used as a medium supplement. J. Biomed. Mater. Res. A. 91, 692-700 (2009).
  14. Madhavan, K., Belchenko, D., Tan, W. Roles of genipin crosslinking and biomolecule conditioning in collagen-based biopolymer: Potential for vascular media regeneration. J. Biomed. Mater. Res. A. , (2011).
  15. Satyam, A., Subramanian, G. S., Raghunath, M., Pandit, A., Zeugolis, D. I. In vitro evaluation of Ficoll-enriched and genipin-stabilised collagen scaffolds. J. Tissue Eng. Regen. Med. , (2012).
  16. Alford, P. W., et al. Blast-induced phenotypic switching in cerebral vasospasm. Proc. Natl. Acad. Sci. U. S. A. 108, 12705-12710 (2011).
  17. Song, H., Tice, J. D., Ismagilov, R. F. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Ed. Engl. 42, 768-772 (2003).
  18. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X., Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335-373 (2001).
  19. Hald, E. S., Steucke, K. E., Reeves, J. A., Win, Z., Alford, P. W. Long-term vascular contractility assay using genipin-modified muscular thin films. Biofabrication. 6, 045005 (2014).
  20. Han, M., Wen, J. K., Zheng, B., Cheng, Y., Zhang, C. Serum deprivation results in redifferentiation of human umbilical vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 291, C50-C58 (2006).
  21. Feinberg, A. W., et al. Muscular thin films for building actuators and powering devices. Science. 317, 1366-1370 (2007).
  22. Volfson, D., Cookson, S., Hasty, J., Tsimring, L. S. Biomechanical ordering of dense cell populations. Proc. Natl. Acad. Sci. U. S. A. 105, 15346-15351 (2008).
  23. Intengan, H. D., Schiffrin, E. L. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension. 38, 581-587 (2001).
  24. Kayembe, K. N., Sasahara, M., Hazama, F. Cerebral aneurysms and variations in the circle of Willis. Stroke. 15, 846-850 (1984).
  25. McCain, M. L., Agarwal, A., Nesmith, H. W., Nesmith, A. P., Parker, K. K. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials. 35, 5462-5471 (2014).
  26. Weir, B., Grace, M., Hansen, J., Rothberg, C. Time course of vasospasm in man. 48, 173-178 (1978).
  27. McCain, M. L., Sheehy, S. P., Grosberg, A., Goss, J. A., Parker, K. K. Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc. Natl. Acad. Sci. U. S. A. 110, 9770-9775 (2013).
  28. Agarwal, A., Goss, J. A., Cho, A., McCain, M. L., Parker, K. K. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab. Chip. 13, 3599-3608 (2013).
  29. Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J., Ingber, D. E. Microengineered physiological biomimicry: organs-on-chips. Lab. Chip. 12, 2156-2164 (2012).
  30. Meer, A. D., van den Berg, A. Organs-on-chips: breaking the in vitro impasse. Integr. Biol. (Camb). 4, 461-470 (2012).

Play Video

Citar este artículo
Hald, E. S., Steucke, K. E., Reeves, J. A., Win, Z., Alford, P. W. Microfluidic Genipin Deposition Technique for Extended Culture of Micropatterned Vascular Muscular Thin Films. J. Vis. Exp. (100), e52971, doi:10.3791/52971 (2015).

View Video