Summary

糖尿病マウスの精巣上体脂肪細胞における膵島支持骨格移植

Published: July 23, 2017
doi:

Summary

このプロトコルは、マウス島の単離および脱細胞化された骨格上への播種を実証する。足場支持膵島を、ストレプトゾトシン(STZ)誘発糖尿病マウスの精巣上体脂肪パッドに移植した。島は移植部位で生存し、高血糖状態を逆転させた。

Abstract

膵島移植は、1型糖尿病の治療に有効であることが臨床的に証明されている。しかしながら、現在の肝内移植戦略は、急性の全血反応を招き、膵島移植が不十分になる可能性がある。ここでは、糖尿病マウスモデルにおける肝外移植部位(epididymal fat pad(EFP))における膵島の移植のための堅牢なプロトコールを報告する。 C57BL / 6Jマウスから高収率で膵島を単離および精製するためのプロトコール、ならびに脱細胞化足場(DCS)上に膵島を播種し、それらを糖尿病にした同系C57BL / 6JマウスのEFP部位に移植することによって実施される移植方法が記載されているストレプトゾトシンによる。 500島を含むDCS移植片は10日以内に高血糖状態を逆転させたが、DCSを有さない自由島は少なくとも30日間必要であった。正常血糖は移植片が外植されるまで3ヶ月まで維持された。結論として、DCSは島の生着をtEFPの肝外部位であり、容易に回収することができ、骨格材料を調べるための再現可能で有用なプラットフォームならびに成功した島移植に必要な他の移植パラメータを提供することができる。

Introduction

1型真性糖尿病(T1D)は、膵島細胞が免疫系によって切除され、患者が一生の間、外因性インスリンの注射に依存する自己免疫性内分泌障害である。エドモントンプロトコールは、膵島移植の臨床研究における画期的な成果である。膵島を門脈から注入し、肝内サイト1に移植した。しかし、不十分な供与膵島の供給源と膵島生着の不十分な2つの主な障害は、膵島移植の大きな成功を妨げる2 。通常、1人の患者の高血糖状態を逆転させるために、3つの死体ドナーから膵島を採取する必要がある。これは、膵島単離手順の低い収率および移植後の膵島損失に起因する。特に、移植後の島は酸素が豊富な血液に浸されていたが、血液と直接接触すると、しばしば即座の血液媒介性の炎症が誘発された島の急激な喪失を引き起こす可能性のある腐敗反応(IBMIR)を引き起こす可能性がある。長期的には、患者の膵島の漸減が、最初の年に90%に達する可能性があり、2および5で30%および10%に低下することができる臨床群における糖尿病の逆転率の低下を説明すると考えられる移植後の年数3

肝臓外の部位での膵島移植は、膵島の血液との直接的な接触を減少させる一方で、肝臓内注入に比べてより限定された位置に移植物を閉じ込める魅力的な戦略であった。過去数年にわたり、腎臓のカプセル、眼、筋肉、脂肪パッド、皮下の空間で研究が行われ、これらの部位の島は生存し、正常血糖を回復させることが示されている4 。さらに、これらの部位の島は回収可能であり、生検またはさらなる置換処置の可能性もある。体外循環それゆえに、臨床移植にとって大きな可能性を秘めています5

生体材料に基づく足場は、細胞移植および組織工学のために集中的に研究されてきた。三次元(3D)スカフォールドは、通常、多孔質構造を含み、生物活性キューの制御された放出を提供するために、細胞の空間構造/組織を生成するための細胞テンプレートとして、またはリザーバとして役立ち得る。骨格はまた、EFP中の移植膵島へのポリ(グリコリド-L-ラクチド) 6 、ポリ(ジメチルシロキサン) 7および熱可塑性ポリ(ウレタン) 8などのポリマー材料から作製されている。膵島の直接移植に比べて、足場の使用は、機械的保護とMODUを提供し、腹腔9、10に膵島の漏れを防止することによって膵島損失を低減することが見出されました局所炎症反応を惹起する。したがって、足場は、移植部位での島移植を促進するために開発されてもよい7

この研究では、DCSを用いたマウスモデルで実施された、EFPにおける膵島移植のパラダイムを実証するつもりである。細胞外マトリックスから誘導された足場は、近年、合成産物と比較して優れた生体適合性およびより天然の多孔質構造のために大きな関心を集めている。ここでは、C57BL / 6Jマウスから高収量で膵島を得るための強力な単離プロトコールについて述べる。ウシ心膜から処理したDCSに膵島を播種し、同系糖尿病モデルで移植片をEFPに移植した。マウスの正常血糖は10日以内に達成され、移植片の除去まで100日まで維持された。

Protocol

すべての実験は、北京大学機関動物実験および使用委員会(IACUC、IACUC no。COE-LuoY-1)によって承認された。 1.アイスアイソレーション 試薬と装置の準備。 HBSS中のコラゲナーゼP粉末(2U / mg)を再構成して5mg / mL溶液を作製し、それを0.22μmフィルターを通してろ過して細菌を除去する。コラゲナーゼPの0.6 mLアリコート溶液を15 mLコニカルチュー?…

Representative Results

顕微鏡止血クランプを使用して実施されたクランプ法は、縫合ライゲーション法と比較して簡単で時間が節約できます。 6匹のマウスから約1,200個の膵島を単離および精製するのに約4時間を要した。新たに単離された島は、典型的には、光学顕微鏡( 図3A )下で粗い周辺部を有していた。島が分離プロセスから回収されると、それらは明るくて?…

Discussion

膵臓の灌流および消化時間は、膵島の収量および品質に影響を及ぼす2つの重要なパラメーターである。 Moskalewskiは最初に、細かいモルモット膵臓を消化するための粗コラゲナーゼ混合物の使用を報告した11 。 Lacy 膵臓を灌流するためのダクト系への酵素の注入を報告した。これは膵島収量を大幅に増加させた12 。酵素の導管潅流がより均一消化み…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

著者はGuanhao BiotechのWei Zhangに脱細胞化された足場を提供してくれたことに感謝したいと思います。私たちは、ポン・ホン・ポンに感謝しています。この研究は、中国国立自然科学財団(プロジェクトNo.31322021)によって財政的に支援されました。

Materials

Dissecting scissor Ningbo Medical
Forceps Ningbo Medical
0.5 mm diameter wire mesh Ningbo Medical
70 μm cell strainer Falcon 352350
Artery hemostatic clamp Ningbo Medical
Microscopic hemostatic clamp Ningbo Medical
Hemostatic forceps Ningbo Medical
Absorbable 6-0 PGLA sutures  JINHUAN With needle
Wound clip Ningbo Medical
Cotton swab Ningbo Medical
Gauze Ningbo Medical
Sterile drapes Ningbo Medical
10mL syringe JINGHUAN
1 mL syringe JINGHUAN
27G intravenous needle JINGHUAN 0.45×15 RWSB
1.5 mL Eppendorf tube Axygen
15mL conical tube Corning 430791
50mL conical tube Corning 430829
35mm Non-treated  Peri-dishes Corning 430588
Transwell Corning 3422
0.22 μm filter Pall PN4612
10 mL serological pipet Corning 4488
Pipet filler S1 Thermo Scientific 9501
Pipette (2-20μL) Axygen AP-20 AXYPETTM
Dissecting microscope Olympus SZ61
Centrifuge Eppendorf 5810R
Hank’s balanced salt solution  Gibco C14175500CP
Collagenase P Roche COLLP-RO
Histopaque 1077 Sigma 10771
RPMI 1640 Gibco 11879-20
FBS Gibco 16000-044
D-glucose Gibco A24940-01
Glucose meter Roche ACCU-CHEK
Penicillin-streptomycin Gibco 15140-122
Streptozotocin Sigma V900890 VetecTM
Chloral hydrate J&K C0073
Sodium citrate Sigma 71497
Citric acid Sigma C2404
Iodophors Ningbo Medical
C57BL/6J, 10-12 weeks old VitalRiver Beijing, China
Decellularized scaffold Guanhao Biotec 131102 Guangzhou, China

Referencias

  1. Shapiro, A. M., et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 343, 230-238 (2000).
  2. Shapiro, A. M. J., et al. International Trial of the Edmonton Protocol for Islet Transplantation. N Engl J Med. 355, 1318-1330 (2006).
  3. Ryan, E. A., et al. Five-year follow-up after clinical islet transplantation. Diabetes. 54, 2060-2069 (2005).
  4. Merani, S., Toso, C., Emamaullee, J., Shapiro, A. M. Optimal implantation site for pancreatic islet transplantation. Br J Surg. 95, 1449-1461 (2008).
  5. Schmidt, C. Pancreatic islets find a new transplant home in the omentum. Nat Biotechnol. 35 (1), (2017).
  6. Dufour, J. M., et al. Development of an ectopic site for islet transplantation, using biodegradable scaffolds. Tissue Eng. 11, 1323-1331 (2005).
  7. Weaver, J. D., et al. Controlled Release of Dexamethasone from Organosilicone Constructs for Local Modulation of Inflammation in Islet Transplantation. Tissue Eng Part A. 21, 2250-2261 (2015).
  8. Wang, K., et al. From Micro to Macro: The Hierarchical Design in a Micropatterned Scaffold for Cell Assembling and Transplantation. Adv Mater. 29, (2017).
  9. Blomeier, H., et al. Polymer Scaffolds as Synthetic Microenvironments for Extrahepatic Islet Transplantation. Transplantation. 82, 452-459 (2006).
  10. Gibly, R. F., et al. Extrahepatic islet transplantation with microporous polymer scaffolds in syngeneic mouse and allogeneic porcine models. Biomaterials. 32, 9677-9684 (2011).
  11. Moskalewski, S. Isolation and Culture of the Islets of Langerhans of the Guinea Pig. Gen Comp Endocrinol. 5, 342-353 (1965).
  12. Lacy, P. E., Kostianovsky, M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 16, 35-39 (1967).
  13. Zmuda, E. J., Powell, C. A., Hai, T. A Method for Murine Islet Isolation and Subcapsular Kidney Transplantation. J Vis Exp. (50), (2011).
  14. Li, D. S., Yuan, Y. H., Tu, H. J., Liang, Q. L., Dai, L. J. A protocol for islet isolation from mouse pancreas. Nat Protoc. 4, 1649-1652 (2009).
  15. Stull, N. D., Breite, A., McCarthy, R., Tersey, S. A., Mirmira, R. G. Mouse Islet of Langerhans Isolation using a Combination of Purified Collagenase and Neutral Protease. J Vis Exp. (67), (2012).
  16. Sakata, N., Yoshimatsu, G., Tsuchiya, H., Egawa, S., Unno, M. Animal models of diabetes mellitus for islet transplantation. Exp Diabetes Res. , 256707 (2012).
  17. Schmidt, C. Pancreatic islets find a new transplant home in the omentum. Nat Biotech. 35, 8-8 (2017).
  18. Londono, R., Badylak, S. F. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng. 43, 577-592 (2015).
check_url/es/54995?article_type=t

Play Video

Citar este artículo
Wang, K., Wang, X., Han, C., Chen, L., Luo, Y. Scaffold-supported Transplantation of Islets in the Epididymal Fat Pad of Diabetic Mice. J. Vis. Exp. (125), e54995, doi:10.3791/54995 (2017).

View Video