Summary

可调水凝胶由肺细胞外基质的三维细胞培养

Published: January 17, 2017
doi:

Summary

这是创建从肺的细胞外基质的三维细胞培养物的支架的方法。完好肺被加工成可支持细胞以三维生长的水凝胶。

Abstract

在这里,我们提出了体外肺细胞培养建立的多组分细胞培养水凝胶的方法。用健康途中从猪,大鼠,或小鼠集团肺组织开始,组织灌注并在随后的化学洗涤剂浸没以除去细胞碎片。处理之前和之后的组织的组织学比较证实除去双链DNA和α-半乳糖苷酶染色的95%以上表明大部分细胞碎片除去。脱细胞后,组织是冻干然后cryomilled成粉末。基质粉末在酸性胃蛋白酶消化溶液消化48小时,然后中和形成的预凝胶溶液中。该预凝胶溶液的凝胶化可通过温育在37℃下被诱导,并且可以立即使用以下中和或储存在4℃下长达两周。涂层可以用在未处理板c中的预凝胶溶液来形成埃尔附件。细胞可以悬浮在之前自组装,实现了3D培养的预凝胶,电镀形成的凝胶从该细胞可以通过在支架迁移,或镀在涂层的表面上。改变的策略提出可影响凝胶化温度,强度,或蛋白质片段的大小。以外的水凝胶的形成,所述水凝胶的刚度可使用京尼平可以增加。

Introduction

Translating in vitro results to the clinic is one of the most challenging issues facing biomedical researchers. In vitro research on tissue culture plastic is easier, more convenient, and maintains high cell viability.1 This approach is a reasonable starting point, but the results have limited clinical translation. Increasingly, laboratories are incorporating three-dimensional constructs to replace the traditional two-dimensional methods. Reviews are available for many three-dimensional environments, from biological scaffolds to polymeric scaffolds.2,3

Biological frameworks can mimic characteristics of in vivo environments as they contain many of the protein and glycosaminoglycan components of the native matrix and provide familiar binding sites for cells to attach to and recognize. Extracellular matrix (ECM) derived materials have been shown to be capable scaffolds for cell attachment and proliferation.4 One challenge that limits the application of ECM hydrogel platforms stems from their inherently weak mechanical properties following gelation. Native tissue often has mechanical properties that are magnitudes higher than hydrogels. Non-toxic crosslinking agents can increase the mechanical properties of hydrogels to better mimic the native tissue environment. Genipin is a non-toxic, natural crosslinker derived from Gardenia plants with the ability to closely tailor mechanical properties of ECM with changes in genipin concentration5,6.

Nearly all cells in the body exist in, and organize on, ECM that they either produce or maintain. New focus on the universal importance of ECM in the organization, condition, and function in every organ or system has sparked the production of matrix based platforms for in vitro investigation. Porcine small intestine submucosa is the most extensively studied naturally-derived scaffold, and it has been used to regenerate tendons, ligaments, skeletal muscle4, and even bone7. Matrices from other organs and donor species have also demonstrated good tissue regeneration potential. The use of foreign ECM components causes minimal issues with immunomodulation. After elimination of host cellular matter, the remaining ECM will be similar in amino acid content and organization to all other mammalian species8. There is a growing line of thinking that the best way to examine cell-ECM interactions in vitro is to utilize organ-specific ECM scaffolds. Each organ provides a unique composition of proteins and proteoglycans to create cellular niches. Niches provide structural, functional and even the enzymatic breakdown of the extracellular matrix contributing to biophysical signaling. To attain an in vitro microenvironment most similar to the in vivo microenvironment, use of tissue specific ECM would optimize the cellular niches for research.

The goal of this protocol is to provide a method for establishing a hydrogel scaffold unique to the lung ECM. This method provides a platform for in vitro research on lung cell-ECM interactions.

Protocol

解 无菌过滤器 说明 DIH 2 O 是 DIH 2 O;无菌过滤 0.1%的Triton X-100溶液是在通风柜100微升的Triton-X 100溶液加至100毫升DIH 2 O和搅拌至溶解; 无菌过滤器。 2%的脱氧胆解决方案是…

Representative Results

使用这种方法,我们已经产生从正常猪,大鼠和小鼠的肺( 图1)的水凝胶。处理肺提供一种估计分别5毫克,40毫克,和10g的ECM粉末。该过程的概要示于图2。在此过程中关键的可视化包括:清洗后脱氧胆肺的白色外观;该预凝胶形成后,溶液应是不透明的,如果保存在4℃的溶液应几个月出现均匀。我们已经包括了基本的故障排除表,以帮助确定在?…

Discussion

之一的生物学的积分方面是自组织分子成执行特定任务层次结构。 13在实验室中,自组装取决于许多因素,如盐浓度,pH和消化时间。如图所示,自组织的水凝胶形式时溶解蛋白质返回到生理温度。形成的水凝胶是能够促进在体外的细胞附着和增殖的。

从ECM生物物理信号的细胞应答不能使用的聚合物进行研究。生物物理信号组织特异性细胞应答不能使用其他组?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

我们要感谢史密斯菲尔德农场捐赠了完整的猪肺组织。我们也想感谢胡扬博士,唐克里斯蒂娜博士和VCU整形外科部允许我们使用他们的设备。水凝胶和组织样品进行SEM准备在解剖学和神经生物学显微镜基金的VCU部支持的,一部分是由NIH-NINDS中心核心格兰特5 P30 NS047463的资金,部分通过资金形式NIH-NCI癌症中心支援津贴P30 CA016059。在VCU纳米技术核心表征基金(NCC)的SEM图像。这项工作是由美国国家科学基金会,CMMI 1351162资助。

Materials

Triton X-100  Fisher Scientific BP151-100 Use in fume hood with eye protection and gloves.
Sodium Deoxycholate Sigma-Aldrich D6750-100g Use with eye protection and gloves.
Magnesium Sulfate Sigma-Aldrich M7506-500g None
Calcium Chloride Sigma-Aldrich C1016-500g None
DNase Sigma-Aldrich D5025-150KU None
HCl Sigma-Aldrich 258148-500ML Use with eye protection and gloves.
Pepsin Sigma-Aldrich P6887-5G Use in fume hood with eye protection and gloves.
Sodium Hydroxide Fisher Scientific BP359-500 Use with eye protection and gloves.
Genipin Wako Chemicals 078-03021 Use in fume hood with eye protection and gloves.
PBS 10x Quality Biological 119-069-151 None
PBS VWR 45000-448 None
Filter Paper Whatman 8519 N/A
Hand pump Fisher Scientific 10-239-1 N/A
Graduate Beaker VitLab 445941 N/A
Cryomill SPEX 6700 Use cryogloves and eye protection.
Lyophilizer FTS FlexiDry Use gloves.
Rheometer Discovery HR-2 Use gloves and eye protection.

Referencias

  1. Lee, J., Cuddihy, M., Kotov, N. . Three-Dimensional Cell Culture Matrices: State of the Art. 14, (2008).
  2. Haycock, J. W. . 3D Cell Culture. , (2011).
  3. Walker, J. M., Ed, . Epithelial cell culture protocols. , (2012).
  4. Badylak, S. F., Freytes, D. O., Gilbert, T. W. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 5 (1), 1-13 (2009).
  5. Koo, H. -. J., Lim, K. -. H., Jung, H. -. J., Park, E. -. H. Anti-inflammatory evaluation of gardenia extract, geniposide and genipin. J. Ethnopharmacol. 103 (3), 496-500 (2006).
  6. Jeffords, M. E., Wu, J., Shah, M., Hong, Y., Zhang, G. Tailoring Material Properties of Cardiac Matrix Hydrogels to Induce Endothelial Differentiation of Human Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces. 7 (20), 11053-11061 (2015).
  7. Suckow, M. A., Voytik-Harbin, S. L., Terril, L. A., Badylak, S. F. Enhanced bone regeneration using porcine small intestinal submucosa. J. Invest. Surg. 12 (5), 277-287 (1998).
  8. Brown, B. N., Badylak, S. F. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl. Res. J. Lab. Clin. Med. 163 (4), 268-285 (2014).
  9. Pouliot, R. A., et al. Development and characterization of a naturally derived lung extracellular matrix hydrogel. J.Biomed.Mater.Res.A. , (2016).
  10. Price, A. P., England, K. A., Matson, A. M., Blazar, B. R., Panoskaltsis-Mortari, A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng. Part A. 16 (8), 2581-2591 (2010).
  11. Freytes, D. O., Martin, J., Velankar, S. S., Lee, A. S., Badylak, S. F. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 29 (11), 1630-1637 (2008).
  12. Tilghman, R. W., et al. Matrix rigidity regulates cancer cell growth and cellular phenotype. PloS One. 5 (9), e12905 (2010).
  13. Ratner, B. D., Bryant, S. J. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6, 41-75 (2004).
  14. Fridman, R., Benton, G., Aranoutova, I., Kleinman, H. K., Bonfil, R. D. Increased initiation and growth of tumor cell lines, cancer stem cells and biopsy material in mice using basement membrane matrix protein (Cultrex or Matrigel) co-injection. Nat Protoc. 7 (6), 1138-1144 (2012).
  15. Zhang, W. -. J., et al. The reconstruction of lung alveolus-like structure in collagen-matrigel/microcapsules scaffolds in vitro. J. Cell. Mol. Med. 15 (9), 1878-1886 (2011).
  16. Booth, A. J., et al. Acellular Normal and Fibrotic Human Lung Matrices as a Culture System for In Vitro Investigation. Am. J. Respir. Crit. Care Med. 186 (9), 866-876 (2016).
  17. Matsuda, A., et al. Evidence for human lung stem cells. N. Engl. J. Med. 364 (19), 1795-1806 (2011).
  18. Zuo, W., et al. p63+Krt5+ distal airway stem cells are essential for lung regeneration. Nature. 517 (7536), 616-620 (2015).
  19. Keane, T. J., Londono, R., Turner, N. J., Badylak, S. F. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 33 (6), 1771-1781 (2012).
  20. Neill, J. D., et al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg. 96 (3), 1046-1055 (2013).
check_url/es/55094?article_type=t

Play Video

Citar este artículo
Link, P. A., Pouliot, R. A., Mikhaiel, N. S., Young, B. M., Heise, R. L. Tunable Hydrogels from Pulmonary Extracellular Matrix for 3D Cell Culture. J. Vis. Exp. (119), e55094, doi:10.3791/55094 (2017).

View Video