Summary

Quantification de l’adhérence des cellules tumorales dans les cryosections des ganglions lymphatiques

Published: February 09, 2020
doi:

Summary

Ici, nous décrivons une méthode simple et peu coûteuse qui permet la quantification des cellules adhésives de tumeur aux cryosections de ganglion lymphatique (LN). Les cellules de tumeur LN-adhérentes sont facilement identifiées par microscopie légère et confirmées par une méthode fluorescence-basée, donnant un index d’adhérence qui indique l’affinité de cellule-contraignante de tumeur au parenchyme de LN.

Abstract

Les ganglions lymphatiques drainant les tumeurs (LN) ne sont pas seulement des filtres de déchets tumoraux. Ils sont l’un des sites régionaux les plus communs de résidence provisoire des cellules de tumeur disséminées dans les patients présentant différents types de cancer. La détection de ces cellules tumorales LN-résidantes est un biomarqueur important lié au pronostic pauvre et aux décisions adjuvantes de thérapie. Des modèles récents de souris ont indiqué que les cellules tumorales LN-résidantes pourraient être une source substantielle de cellules malignes pour les métastases lointaines. La capacité de quantifier l’adhérence des cellules tumorales au parenchyme LN est une jauge critique dans la recherche expérimentale qui se concentre sur l’identification des gènes ou des voies de signalisation pertinentes pour la diffusion lymphatique/métastatique. Parce que les LN sont des structures 3D complexes avec une variété d’apparences et de compositions dans les sections tissulaires selon le plan de la section, leurs matrices sont difficiles à reproduire expérimentalement in vitro d’une manière entièrement contrôlée. Ici, nous décrivons une méthode simple et peu coûteuse qui permet la quantification des cellules adhésives de tumeur aux cryosections de LN. En utilisant des sections sériedes de la même LN, nous adaptons la méthode classique développée par Brodt pour utiliser des étiquettes non radioactives et comptons directement le nombre de cellules tumorales adhérant par surface ln. Les cellules tumorales adhérentes à LN sont facilement identifiées par microscopie légère et confirmées par une méthode basée sur la fluorescence, donnant un indice d’adhérence qui révèle l’affinité cell-contraignante au parenchyme de LN, qui est l’évidence suggestive des altérations moléculaires dans la liaison d’affinité des intégrines à leurs LN-ligands corrélés.

Introduction

La métastes du cancer est la principale raison de l’échec du traitement et l’aspect dominant du cancer qui met la vie en danger. Comme postulé il y a 130 ans, la propagation métastatique résulte quand une élite de cellules tumorales disséminées (DTC, les « graines ») acquièrent des capacités biologiques spécifiques qui leur permettent d’échapper aux sites primaires et d’établir une croissance maligne à des sites éloignés (le « sol »)1. Récemment, plusieurs concepts nouveaux concernant les relations « semences et sols » ont vu le jour, tels que l’induction de niches prémétastatiques (conceptualisées comme « sol fertile » nécessaires à la croissance des « graines »), l’auto-ensemencement des tumeurs primaires par les DTC, la dormance des « graines » dans les organes secondaires et le modèle de progression parallèle de la métastase2.

Pour la plupart des tumeurs malignes solides, les DTC peuvent résider et être détectés dans de nombreux organes mésenchymales, tels que la moelle osseuse et les ganglions lymphatiques (LN) chez les patients atteints ou sans preuve de métastes cliniques. Puisque les LN de tumeur-vidant sont le premier emplacement de la propagation régionale des DTCs, le statut de LN est un indicateur pronostique important et est souvent associé aux décisions adjuvantes de thérapie3. Pour certains types de tumeurs, la corrélation entre l’état LN et les pires résultats est forte, y compris la tête et le cou4,5, sein6, prostate7, poumon8, gastrique9, colorectal10,11 et les cancers de la thyroïde12.

Les LN sont de petits organes ovoïdes du système lymphatique, qui sont couverts de cellules réticulaires et enfermés avec des vaisseaux lymphatiques. Ces organes sont absolument nécessaires au fonctionnement du système immunitaire13. Les LN agissent comme des plates-formes d’attraction pour les cellules flottantes immunitaires, rassemblant les lymphocytes et les cellules antigènes-présentant ensemble14. Cependant, les LN attirent également les cellules tumorales circulantes. Au fil des décennies, les LN ont été représentés comme des voies passives de transport pour les cellules tumorales métastatiques. Cependant, des études récentes ont indiqué que les cellules tumorales peuvent également être guidées vers les LN par des indices chimiothérapeutiques (chemokines) et/ou haptotactiques (éléments de matrice extracellulaire) sécrétés par l’endothélium lymphatique15. À titre d’exemples, la surexpression du récepteur CCR7 dans les cellules tumorales facilite le guidage des cellules métastatiques du mélanome vers les LN drainant la tumeur16. En outre, les protéines lN extracellulaires fournissent un échafaudage adhésif pour le recrutement et la survie des cellules tumorales circulantes17. En fait, les LN drainant les tumeurs fournissent un sol fertile pour l’ensemencement des DTC, qui peuvent être maintenus dans des états proliférants ou dormants par des signaux microenvironnementaux LN spécifiques18. Le sort final de ces DTC résidant en LN est controversé; certains travaux suggèrent que ces cellules sont des indicateurs passifs de progression métastatique19, tandis que d’autres proposent qu’elles sont plus susceptibles d’être les fondateurs de la résistance (en auto-ensemencement des sites primaires) et / ou agissent comme réservoirs cellulaires pour les métastases (propagation de «graines» pour la croissance du cancer tertiaire)20,21. Récemment, à l’aide de modèles précliniques, il a été démontré qu’une fraction de ces DTC résidant en LN ont activement envahi les vaisseaux sanguins, sont entrés dans la circulation sanguine et ont colonisé les poumons21.

Considérant que la présence de cellules cancéreuses dans les LN est un marqueur pour l’agressivité et l’invasivité de cancer, dans cette étude, nous avons optimisé une méthode classique développée par Brodt22 pour mesurer quantitativement l’adhérence de cellules de tumeur aux LNs in vitro. L’utilisation d’un test à base de fluorescence nous a permis de développer un protocole peu coûteux, rapide, sensible et respectueux de l’environnement (non radioactif) pour la détection des altérations adhésives entre les cellules tumorales et les cryosections LN. Utilisant les cellules de cancer du sein de MCF-7 exprimant différents niveaux de l’expression de gène de NDRG4 et des sections congelées de rat LN pour illustrer la méthode, nous avons prouvé que ce protocole a permis une bonne corrélation entre l’adhérence de cellules de tumeur aux LNs in vitro et métastasis de LN observés dans les patients de cancer du sein24.

Protocol

Des LN ont été récupérés des carcasses fraîches des rats adultes sains de Wistar sacrifiés par la dislocation cervicale. Nous avons suivi les Lignes directrices des NIH pour la douleur et la détresse chez les animaux de laboratoire et toutes les procédures ont été approuvées par le Comité d’éthique et de recherche animale de l’Institut de recherche et d’éducation de l’hôpital de Sorio-Libanês (CEUA P 2016-04). REMARQUE : Tous les tissus congelés frais sont considéré…

Representative Results

Nous illustrons l’analyse en évaluant le potentiel adhésif LN des cellules fluorescentes rouges de cancer du sein MCF-7 exprimant différents niveaux du gène NDRG4 (appelé cellules NDRG4-positives et NDRG4-négatives), un modulateur négatif du clustering bêta1-intégrine à la surface cellulaire24,en examinant les fractions des cellules tumorales de Rat LN-adhérents. Des exemples d’images brutes de ce protocole sont présentés à la…

Discussion

La dissémination du système lymphatique des cellules cancéreuses nécessite une variété d’événements complexes dirigés par des cellules. Ils commencent avec le détachement cellulaire de la tumeur primaire et le remodelage de l’architecture extracellulaire de matrice (ECM), et sont soutenus par la chimiotaxis persistante et la migration active par les lymphatiques afférents en route aux LNs sentinelles. Si les cellules cancéreuses adhèrent et survivent dans les LN, elles peuvent facilement se propager à d…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

Nous remercions le Dr Rosana De Lima Pagano et Ana Carolina Pinheiro Campos pour leur assistance technique. Ce travail a été soutenu par des subventions de: FAPESP – Fondation de recherche de Sao Paulo (2016/07463-4) et Ludwig Institute for Cancer Research (LICR).

Materials

15 mL Conical Tubes Corning 352096
2-propanol Merck 109634
Benchtop Laminar Flow Esco Cell Culture
Bin for Disc Leica 14020139126
Bovine Serum Albumin Sigma-Aldrich A9647-100
Cell culture flask T-25 cm2 Corning 430372
Cryostat Leica CM1860 UV
Cryostat-Brush with magnet Leica 14018340426
DiIC18 Cell Traker Dye Molecular Probes V-22885
Fetal Bovine Serum (FBS) Life Technologies 12657-029
Fluorescence microscope Nikon Eclipse 80
Forma Series II CO2 incubator Thermo Scientific
Formaldehyde Sigma-Aldrich 252549
High Profile Disposable Razor Leica 14035838926
Incubation Cube (IHC) KASVI K560030
Inverted microscope Olympus CKX31
Isofluran 100 mL Cristália
Liquid Bloquer Super Pap Pen Abcam, Life Science Reagents ab2601
Optimal Cutting Temperature "OCT" compound Sakura 4583
Phosphate-buffered Saline (PBS) Life Technologies 70011-044
Poly-L-lysine Sigma-Aldrich P8920
RPMI Gibco 31800-022
Serological Pipettes 1 mL Jet Biofil GSP010001
Serological Pipettes 10 mL Jet Biofil GSP010010
Serological Pipettes 2 mL Jet Biofil GSP010002
Serological Pipettes 5 mL Jet Biofil GSP010005
Serological Pipettes 50 mL Jet Biofil GSP010050
Serological Pipettor Easypet 3 Eppendorf
Tissue-Tek cryomold Sakura 4557
Trypan Blue 0.4% Invitrogen T10282
Trypsin Instituto Adolfo Lutz ATV

Referencias

  1. Paget, S. The distribution of secondary growths in cancer of the breast. Cancer and Metastasis Reviews. 8 (2), 98-101 (1989).
  2. Liu, Q., Zhang, H., Jiang, X., Qian, C., Liu, Z., Zuo, D. Factors involved in cancer metastasis: a better understanding to seed and soil hypothesis. Molecular Cancer. 16 (1), 176 (2017).
  3. Padera, T. P., Meijer, E. F., Munn, L. L. The Lymphatic System in Disease Processes and Cancer Progression. Annual Review of Biomedical Engineering. 18, 125-158 (2016).
  4. Leemans, C. R., Tiwari, R., Nauta, J. J., van der Waal, I., Snow, G. B. Regional lymph node involvement and its significance in the development of distant metastases in head and neck carcinoma. Cancer. 71 (2), 452-456 (1993).
  5. Kowalski, L. P., et al. Prognostic significance of the distribution of neck node metastasis from oral carcinoma. Head & Neck. 22 (3), 207-214 (2000).
  6. McGuire, W. L. Prognostic factors for recurrence and survival in human breast cancer. Breast Cancer Research and Treatment. 10 (1), 5-9 (1987).
  7. Gervasi, L. A., et al. Prognostic significance of lymph nodal metastases in prostate cancer. The Journal of Urology. 142 (2 Pt 1), 332-336 (1989).
  8. Naruke, T., Suemasu, K., Ishikawa, S. Lymph node mapping and curability at various levels of metastasis in resected lung cancer. The Journal of Thoracic and Cardiovascular Surgery. 76 (6), 832-839 (1978).
  9. Sasako, M., et al. D2 lymphadenectomy alone or with para-aortic nodal dissection for gastric cancer. The New England Journal of Medicine. 359 (5), 453-462 (2008).
  10. Chang, G. J., Rodriguez-Bigas, M. A., Skibber, J. M., Moyer, V. A. Lymph node evaluation and survival after curative resection of colon cancer: systematic review. Journal of the National Cancer Institute. 99 (6), 433-441 (2007).
  11. Watanabe, T., et al. Extended lymphadenectomy and preoperative radiotherapy for lower rectal cancers. Surgery. 132 (1), 27-33 (2002).
  12. Machens, A., Dralle, H. Correlation between the number of lymph node metastases and lung metastasis in papillary thyroid cancer. The Journal of Clinical Endocrinology & Metabolism. 97 (12), 4375-4382 (2012).
  13. Dijkstra, C. D., Kamperdijk, E. W. A., Veerman, A. J. P., Jones, T. C., Ward, J. M., Mohr, U., Hunt, R. D. Normal Anatomy, Histology, Immunohistology, and Ultrastructure, Lymph Node, Rat. Hemopoietic System. , 129-136 (1990).
  14. Gretz, J. E., Anderson, A. O., Shaw, S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunological Reviews. 156, 11-24 (1997).
  15. Podgrabinska, S., Skobe, M. Role of lymphatic vasculature in regional and distant metastases. Microvascular Research. 95, 46-52 (2014).
  16. Wiley, H. E., Gonzales, E. B., Maki, W., Wu, M. T., Hwang, S. T. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. Journal of the National Cancer Institute. 93 (21), 1638-1643 (2001).
  17. Chen, J., Alexander, J. S., Orr, A. W. Integrins and their extracellular matrix ligands in lymphangiogenesis and lymph node metastasis. International Journal of Cell Biology. 2012, 853703 (2012).
  18. Müller, M., Gounari, F., Prifti, S., Hacker, H. J., Schirrmacher, V., Khazaie, K. EblacZ tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells. Investigación sobre el cáncer. 58 (23), 5439-5446 (1998).
  19. Cady, B. Regional lymph node metastases; a singular manifestation of the process of clinical metastases in cancer: contemporary animal research and clinical reports suggest unifying concepts. Annals of Surgical Oncology. 14 (6), 1790-1800 (2007).
  20. Klein, C. A. The systemic progression of human cancer: a focus on the individual disseminated cancer cell-the unit of selection. Advances in Cancer Research. 89, 35-67 (2003).
  21. Pereira, E. R., et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 359 (6382), 1403-1407 (2018).
  22. Brodt, P. Tumor cell adhesion to frozen lymph node sections-an in vitro correlate of lymphatic metastasis. Clinical & Experimental Metastasis. 7 (3), 343-352 (1989).
  23. Badylak, S. F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transplant Immunology. 12 (3-4), 367-377 (2004).
  24. Jandrey, E. H. F., et al. NDRG4 promoter hypermethylation is a mechanistic biomarker associated with metastatic progression in breast cancer patients. NPJ Breast Cancer. 5, 11 (2019).
  25. Honig, M. G., Hume, R. I. Dil and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends in Neurosciences. 12 (9), 333 (1989).
  26. Costa, E. T., et al. Intratumoral heterogeneity of ADAM23 promotes tumor growth and metastasis through LGI4 and nitric oxide signals. Oncogene. 34 (10), 1270-1279 (2015).
  27. Song, J., et al. Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival. Proceedings of the National Academy of Sciences of the United States of America. 110 (31), E2915-E2924 (2013).
  28. Kramer, R. H., Rosen, S. D., McDonald, K. A. Basement-membrane components associated with the extracellular matrix of the lymph node. Cell and Tissue Research. 252 (2), 367-375 (1988).
  29. Sobocinski, G. P., Toy, K., Bobrowski, W. F., Shaw, S., Anderson, A. O., Kaldjian, E. P. Ultrastructural localization of extracellular matrix proteins of the lymph node cortex: evidence supporting the reticular network as a pathway for lymphocyte migration. BMC Immunology. 11, 42 (2010).
  30. Pathak, A. P., Artemov, D., Neeman, M., Bhujwalla, Z. M. Lymph Node Metastasis in Breast Cancer Xenografts Is Associated with Increased Regions of Extravascular Drain, Lymphatic Vessel Area, and Invasive Phenotype. Investigación sobre el cáncer. 66 (10), 5151-5158 (2006).
check_url/es/60531?article_type=t

Play Video

Citar este artículo
Jandrey, E. H. F., Kuroki, M. A., Camargo, A. A., Costa, E. T. Quantification of Tumor Cell Adhesion in Lymph Node Cryosections. J. Vis. Exp. (156), e60531, doi:10.3791/60531 (2020).

View Video