Summary

通过预置等电聚焦(IEF)方法,将生物活性小分子、肽与天然来源和蛋白质从微生物中分离出来

Published: June 14, 2020
doi:

Summary

目标是通过使用液相同电聚焦(IEF)方法,分馏和分离生物活性小分子、复杂植物提取物中的肽和致病微生物中的蛋白质。此外,分离的分子被识别,其生物活性得到确认。

Abstract

植物和微生物的天然产物是生物活性分子的丰富来源。在使用之前,复杂提取物中的活性分子必须纯化,以便下游应用。有多种色谱方法可用于此目的,但并非所有实验室都能提供高性能方法,与复杂的生物样品隔离可能很困难。在这里,我们演示了预置液相异电对焦(IEF)可以根据复杂的植物提取物(pI)分离分子,包括小分子和肽。我们采用了该方法进行复杂的生物样品分馏和表征。作为概念的证明,我们分馏了一种Gymnema sylvestre植物提取物,分离出一系列二苯丙酮皂素小分子和肽。我们还演示了使用念珠菌藻菌作为模型系统的有效微生物蛋白分离。

Introduction

从复杂的生物样品中纯化生物分子是生物实验中必不可少的一步,而且往往是困难的步骤。同电对焦(IEF)非常适合复杂生物分子的高分辨率分离,其中载体放大物根据其电荷移动,并在电场3中建立pH梯度。IEF的第一个商业载体安培利特于1964年由奥洛夫·韦斯特伯格开发,并申请了44,5专利。载体安皮质是脂肪寡聚-氨基-碳水化合物酸分子,长度不同,分支6。随后,韦斯特伯格等人改进了载体增强剂,以扩大在分离生物分子66、77中的用途。

分离生物分子的方法包括阿甘丝和多丙烯酰胺凝胶电泳、二维凝胶电泳(2-DE)、异电聚焦、毛细血管电泳、异丙三酚酶和其他色谱技术(如TLC、FPLC、HPLC)2。2液体相IEF在一种叫做”罗托福”的仪器中执行,是由米兰比尔8发明的。他开创了该仪器的概念和设计,为电泳迁移理论做出了广泛贡献。他的研究小组还开发了一个用于计算机模拟的电泳分离过程数学模型

液相IEF装置是一种水平旋转圆柱形电池,由尼龙芯组成,分为20个多孔隔间和一个循环水冷却陶瓷棒。多孔腔允许分子在电极之间的水相中迁移,并允许在真空下以分数收集纯化样品。此净化系统可在 <4 小时内提供高达 1000 倍的特定分子纯化。该仪器的一个有价值的特点是,它可以作为从复杂混合物中纯化的第一步,或作为实现纯度10的最后一步。如果感兴趣的分子是蛋白质,另一个好处是其原生构象将在分离过程中保持。

液体相IEF的使用被广泛报道用于蛋白质、酶和抗体纯化66、10、11、12、13、14。,10,11,12,13,14在这里,我们描述了这种方法用于分离和纯化小分子和肽从药用植物Gymnema sylvestre。该协议将帮助研究人员集中和纯化活性小分子从植物提取物下游应用低成本。此外,我们还演示了从这个基于IEF的系统中从念珠菌藻真菌中提取的复杂蛋白质中提取的蛋白质富集15作为第二个例子。

Protocol

1. 标准液相 IEF 单元的设置和预运行 根据说明手册(参见材料表),将液相 IEF 电极(阳极红色按钮和阴极黑色按钮)与各自的交换膜组装。使用 0.1 M NaOH 对离子交换膜进行平衡,在使用新膜时,阳离子交换膜与 0.1 M H3PO4交换膜至少 16 小时。 在运行之间将膜存放在电解质中(0.1 M NaOH 或 0.1 M H3PO4),不允许干燥。 通过在…

Representative Results

从Gymnema sylvestre植物提取物分离和纯化小分子和肽采用预选液相IEF方法,从人类致病性真菌C.白化病菌中分馏药用植物提取物和细胞表面蛋白。图 1显示了这些分馏协议的原理图。 从液相IEF获得的G.sylvestre提取物的20个分数中,发现暗色分子(二烯类皂苷)在阳极端(pH 2-3)迁移和浓缩,在阴极端(pH 8-9)观察到浅黄色?…

Discussion

来自天然产品来源(如植物)的小分子包括复杂的二次代谢物,在化学结构上差异很大。据信,他们参与了植物防御机制。此外,多肽也存在于植物组织22。这些天然产物小分子是药物发现和开发测试分子的丰富来源。然而,其隔离和纯化所需的困难和繁琐的方法限制了它们用于治疗应用。本报告中使用的液相IEF方法强调了在不损害其生物活性的情况下分离这些小分子和多肽的?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

我们感谢生物学司和强生癌症研究中心分别为GV颁发BRIEF和IRA奖的资金来源。我们还感谢K-INBRE博士后奖RV。这项工作得到了国家卫生研究院国家普通医学研究所的机构发展奖(IDeA)的部分支持,该奖授予P20 GM103418。内容完全由作者负责,不一定代表国家普通医学研究所或国家卫生研究院的官方观点。我们感谢匿名评论者提供的有用意见。

Materials

0.45 µm syringe filter Fisher scientfic 09-720-004
2-Mercaptoethanol Sigma M3148
Ammonium carbonate Sigma-Aldrich 207861-500
Bio-Lyte 3/10 Ampholyte Bio-Rad 163-1113
Bio-Lyte 5/8 Ampholyte Bio-Rad 163-1192
Compact low temperature thermostat Lauda -Brinkmann RM 6T Set water cooling to 4 oC and it can be run even at 0 oC as when it passes through the Rotofor cooling core, the circulating water temperature will be around 5 or more depending on the voltage.
Coomassie Brilliant Blue R Sigma-Aldrich B7920
Dialysis tubing (3,500 MWCO) Spectrum Spectra/Por 132112T
Gymnema plant leaf extract powder (>25% Gymnemic acids) Suan Farma, NJ USA
Incubator Lab companion SI 300R
Microscope Leica DM 6B
Mini protean electrophoresis Bio-Rad
pH meter Mettler Toledo S20 Useful to determine the pH of the Rotofor (liquid-phase IEF) fractions
Rotofor Bio-Rad 170-2972 http://www.bio-rad.com/webroot/web/pdf/lsr/literature/M1702950E.pdf (Rotofor Instruction manual for assembling the unit)
RPMI-1640 Medium HyClone DH30255.01
Sealing tape Bio-Rad 170-2960 Scotch tape may also be used.
Sorvall legend micro 17 centrifuge Thermo scientific 75002432
TPP tissue culture plate -96 well flat bottom TPP TP92696

Referencias

  1. Jankowska, U., et al. Optimized procedure of extraction, purification and proteomic analysis of nuclear proteins from mouse brain. Journal of Neuroscience Methods. 261, 1-9 (2016).
  2. Pergande, M. R., Cologna, S. M. Isoelectric Point Separations of Peptides and Proteins. Proteomes. 5 (1), (2017).
  3. Stoyanov, A. IEF-based multidimensional applications in proteomics: toward higher resolution. Electrophoresis. 33 (22), 3281-3290 (2012).
  4. Vesterberg, O. A. Y. . Method of Isoelectric Fractionation. , (1964).
  5. Vesterberg, O., Svensson, H. Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. IV. Further studies on the resolving power in connection with separation of myoglobins. Acta Chemica Scandinavica. 20 (3), 820-834 (1966).
  6. Righetti, P. G. . Isoelectric Focusing: Theory, Methodology and Applications. , 1 (1983).
  7. Vesterberg, O. Synthesis and Isoelectric Fractionation of Carrier Ampholytes. Acta Chemica Scandinavica. 23, 2653-2666 (1969).
  8. Bier, M. Recycling isoelectric focusing and isotachophoresis. Electrophoresis. 19 (7), 1057-1063 (1998).
  9. Bier, M., Palusinski, O. A., Mosher, R. A., Saville, D. A. Electrophoresis: mathematical modeling and computer simulation. Science. 219 (4590), 1281-1287 (1983).
  10. Ayala, A., Parrado, J., Machado, A. Use of Rotofor preparative isoelectrofocusing cell in protein purification procedure. Applied Biochemistry and Biotechnology. 69 (1), 11-16 (1998).
  11. Wagner, L., et al. Isolation of dipeptidyl peptidase IV (DP 4) isoforms from porcine kidney by preparative isoelectric focusing to improve crystallization. Biological Chemistry. 392 (7), 665-677 (2011).
  12. Hosken, B. D., Li, C., Mullappally, B., Co, C., Zhang, B. Isolation and Characterization of Monoclonal Antibody Charge Variants by Free Flow Isoelectric Focusing. Analytical Chemistry. 88 (11), 5662-5669 (2016).
  13. Yu, J. J., et al. Francisella tularensis T-cell antigen identification using humanized HLA-DR4 transgenic mice. Clinical Vaccine Immunology. 17 (2), 215-222 (2010).
  14. Riyong, D., et al. Size and charge antigens of Dirofilaria immitis adult worm for IgG-ELISA diagnosis of bancroftian filariasis. Southeast Asian Journal of Tropical Medicine and Public Health. 41 (2), 285-297 (2010).
  15. Vediyappan, G., Bikandi, J., Braley, R., Chaffin, W. L. Cell surface proteins of Candida albicans: preparation of extracts and improved detection of proteins. Electrophoresis. 21 (5), 956-961 (2000).
  16. Vediyappan, G., Dumontet, V., Pelissier, F., d’Enfert, C. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. PLoS One. 8 (9), 74189 (2013).
  17. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72, 248-254 (1976).
  18. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227 (5259), 680-685 (1970).
  19. Riazi, S., Dover, S., Turovskiy, Y., Chikindas, M. L. Commercial ampholytes used for isoelectric focusing may interfere with bioactivity based purification of antimicrobial peptides. Journal of Microbiological Methods. 71 (1), 87-89 (2007).
  20. Kamei, K., Takano, R., Miyasaka, A., Imoto, T., Hara, S. Amino-Acid-Sequence of Sweet-Taste-Suppressing Peptide (Gurmarin) from the Leaves of Gymnema-Sylvestre. Journal of Biochemistry. 111 (1), 109-112 (1992).
  21. Craik, D. J. Chemistry. Seamless proteins tie up their loose ends. Science. 311 (5767), 1563-1564 (2006).
  22. Craik, D. J., Daly, N. L., Bond, T., Waine, C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. Journal of Molecular Biology. 294 (5), 1327-1336 (1999).
  23. Stoecklin, W. Chemistry and physiological properties of gymnemic acid, the antisaccharine principle of the leaves of Gymnema sylvestre. Journal of Agricultural and Food Chemistry. 17 (4), 704-708 (1969).
  24. Liu, H. M., Kiuchi, F., Tsuda, Y. Isolation and structure elucidation of gymnemic acids, antisweet principles of Gymnema sylvestre. Chemical & Pharmaceutical Bulletin (Tokyo). 40 (6), 1366-1375 (1992).
  25. Veerapandian, R., Vediyappan, G. Gymnemic Acids Inhibit Adhesive Nanofibrillar Mediated Streptococcus gordonii-Candida albicans Mono-Species and Dual-Species Biofilms. Frontiers in Microbiology. 10, 2328 (2019).
  26. Chaffin, W. L. Candida albicans cell wall proteins. Microbiology and Molecular Biology Reviews. 72 (3), 495-544 (2008).
check_url/es/61101?article_type=t

Play Video

Citar este artículo
Veerapandian, R., Paudyal, A., Chang, A., Vediyappan, G. Separation of Bioactive Small Molecules, Peptides from Natural Sources and Proteins from Microbes by Preparative Isoelectric Focusing (IEF) Method. J. Vis. Exp. (160), e61101, doi:10.3791/61101 (2020).

View Video