Summary

Mappatura batteriche reti funzionali e sulle vie di<em> Escherichia Coli</em> Utilizzando matrici sintetiche genetiche

Published: November 12, 2012
doi:

Summary

Sistematiche e su larga scala di sintesi genetica (gene-gene o epistasi) schermi di interazione può essere utilizzato per esplorare la ridondanza genetica e via di cross-talk. Qui, descriviamo un high-throughput quantitativa sintetica genetica tecnologia di retinatura array, definito eSGA che abbiamo sviluppato per chiarire i rapporti epistatiche ed esplorare reti di interazione genetici in<em> Escherichia coli</em>.

Abstract

Fenotipi sono determinati da una serie complessa di fisica (ad esempio proteina-proteina) e funzionali (ad esempio gene-gene o genetico) interazioni (GI) 1. Mentre interazioni fisiche in grado di indicare quali proteine ​​batteriche sono associati come complessi, non necessariamente rivelano percorso a livello di relationships1 funzionali. GI schermi, in cui si misura la crescita dei doppi mutanti recanti due geni cancellati o inattivato e rispetto ai corrispondenti singoli mutanti, in grado di illuminare le dipendenze epistatiche tra loci e, quindi, fornire un mezzo per interrogare e scoprire nuove relazioni funzionali 2. Mappe a grande scala GI sono stati riportati per gli organismi eucarioti, come lievito 3-7, ma le informazioni GI rimangono sparse per procarioti 8, che ostacola l'annotazione funzionale dei genomi batterici. A tal fine, noi e altri hanno sviluppato high-throughput quantitative batteriche metodi di screening GI 9, 10 </sup>.

Qui, presentiamo i passaggi chiave necessari per eseguire quantitativa E. coli sintetico Genetic Array (eSGA) Procedura di screening su un genoma scala 9, utilizzando naturale coniugazione batterica e ricombinazione omologa per generare sistemica e misurare l'idoneità di un gran numero di doppi mutanti in un formato matrice colonia. Brevemente, un robot è utilizzato per trasferire , attraverso la coniugazione, cloramfenicolo (Cm) – segnato da alleli mutanti Hfr ingegneria (ad alta frequenza di ricombinazione) 'ceppi donatori in un array ordinato di kanamicina (Kan) – marcati F-destinatario ceppi. In genere, si usa la perdita di funzione singoli mutanti recanti non essenziali delezioni del gene (ad esempio, la collezione 'Keio' 11) e le mutazioni geniche essenziali hypomorphic alleli (cioè conferiscono ridotta espressione della proteina, la stabilità, o attività 9, 12, 13) a interrogare le associazioni funzionali di geni non essenziali ed essenziali, resture rispettivamente. Dopo coniugazione mediata e conseguente scambio genetico mediante ricombinazione omologa, i mutanti risultanti doppie sono selezionati su terreno solido contenente entrambi gli antibiotici. Dopo conseguenza, le piastre vengono create digitalmente delle immagini e le dimensioni delle colonie sono quantitativamente valutato con un proprio sistema automatico di elaborazione delle immagini 14. IG si rivelano quando il tasso di crescita di un doppio mutante o è significativamente migliore o peggiore del previsto 9. Aggravanti (o negativo) GIS spesso il risultato tra la perdita-di-funzione mutazioni in coppie di geni provenienti da percorsi di compensazione che incidono sullo stesso processo essenziale 2. Qui, la perdita di un singolo gene è tamponata, in modo tale che sia mutante singolo è praticabile. Tuttavia, la perdita di entrambi i percorsi è deleteria e provoca letalità sintetica o malattia (ovvero crescita lenta). Viceversa, alleviare (o positivo) possono verificarsi interazioni tra i geni della via stessa o proteina complessa 2 comedelezione del gene o da solo è spesso sufficiente a perturbare la normale funzione della via o complesso tale che perturbazioni supplementari non ridurre l'attività, e quindi la crescita, ulteriormente. Nel complesso, l'identificazione sistematica e l'analisi delle reti GI in grado di fornire, località turistiche, mappe globali delle relazioni funzionali tra un gran numero di geni, da cui percorso informazioni a livello di perdere per altri approcci possono dedurre 9.

Protocol

1. Costruire HFR ceppi donatori Mutant Cavalli da Recombineering 15, 16 I passi per costruire le macchie donatori eSGA sono descritti di seguito. In breve, usiamo λ mirata – Red mediata ricombinazione omologa 16 di cassette amplificato marcatore selezionabile frammenti di DNA generati da PCR per creare non essenziali mutanti di delezione del gene (punto 1.1) o di geni essenziali ceppi mutanti hypomorphic donatori (paragrafo 1.2), che vengono poi utilizza…

Representative Results

GIs reveal functional relationships between genes. Similarly, since genes in the same pathway display similar GI patterns and the GI profile similarity represents the congruency of phenotypes, we can group functionally related genes into pathways by clustering their GI profiles. Integrating GI and GI correlation networks with physical interaction information or other association data, such as genomic context (GC) relationships can also reveal the organization of higher-order functional modules that define core bio…

Discussion

Abbiamo delineato un graduale protocollo per l'utilizzo di robot per studiare lo screening eSGA funzioni geniche batteriche a livello percorso interrogando GI. Questo approccio può essere utilizzato per studiare singoli geni sia interi sistemi biologici in E. coli. Cura l'esecuzione delle fasi sperimentali di cui sopra, tra cui tutti i controlli del caso, e rigorosamente in maniera indipendente l'analisi e la validazione dei dati GI sono aspetti chiave per il successo di eSGA nel fare nuove scopert…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Questo lavoro è stato sostenuto da fondi del Genome Canada, l'Ontario Institute Genomica e Istituti canadesi di borse di ricerca per la salute e JG AE AG è un destinatario della borsa di studio Vanier Canada Graduate.

Materials

        I. Antibiotics 2 36471
Remove
Chloramphenicol   Bioshop #CLR201   3 36472
Remove
Kanamycin     #KAN201   4 36480
Remove
Ampicillin     # AMP201   5 36473
Remove
        2. Luria-Bertani medium 6 36474
Remove
LB powder   Bioshop #LBL405   7 36478
Remove
Agar   Bioshop #AGR003   8 36481
Remove
        3. Bacterial Strains and Plasmids 9 36475
Remove
Hfr Cavalli strain λred system (JL238)   Babu et al.14.     10 36476
Remove
pKD3   E. coli Genetic Stock Centre, Yale     11 36477
Remove
Keio E. coli F- recipient collection   National BioResource Project (NBRP) of Japan11     12 36479
Remove
Hypomorphic E. coli F- SPA-tag strains   Open biosystems; Babu et al.14     13 36491
Remove
        4. Primers 14 36486
Remove
pKD3-based desalted constant primers       F1: 5′-GGCTGACATGGGAATTAGC-3′
R1: 5′-AGATTGCAGCATTACACGTCTT-3′
15 36482
Remove
Desalted custom primers       Cm-R: 5′-TTATACGCAAGGCGACAAGG-3′
Cm-F: 5′- GATCTTCCGTCACAGGTAGG-3′
16 36483
Remove
Desalted custom primers       F2 and R2: 20 nt constant regions based on pKD3 sequence and 45 nt custom homology regions
F2 constant region:
5′-CATATGAATATCCTCCTTA-3′
R2 constant region:
5′-TGTGTAGGCTGGAGCTGCTTC-3’S1 and S2: 27 nt constant regions for priming the amplification of the SPA-Cm cassette and 45 nt custom homology regions
S1 constant region:
5’AGCTGGAGGATCCATGGAAAAGAGAAG -3′
S2 constant region:
5′- GGCCCCATATGAATATCCTCCTTAGTT -3′

KOCO-F and KOCO-C: 20 nt primers 200 bp away from the non-essential gene deletion site or the essential
gene SPA-tag insertion site
17 36484
Remove
        5. PCR and Electrophoresis Reagents 18 36485
Remove
Taq DNA polymerase   Fermentas # EP0281   19 36487
Remove
10X PCR buffer   Fermentas # EP0281   20 36488
Remove
10 mM dNTPs   Fermentas # EP0281   21 36489
Remove
25 mM MgCl2   Fermentas # EP0281   22 36490
Remove
Agarose   Bioshop # AGA002   23 36492
Remove
Loading dye   NEB #B7021S   24 36493
Remove
Ethidium bromide   Bioshop # ETB444   25 36497
Remove
10X TBE buffer   Bioshop # ETB444.10   26 36494
Remove
Tris Base   Bioshop # TRS001   27 36495
Remove
Boric acid   Sigma # T1503-1KG   28 36496
Remove
0.5 M EDTA (pH 8.0)   Sigma # B6768-500G   29 36498
Remove
DNA ladder   NEB #N3232L   30 36499
Remove
        6. DNA isolation and Clean-up Kits 31 36500
Remove
Genomic DNA isolation and purification kit   Promega #A1120   32 36501
Remove
Plasmid Midi kit   Qiagen # 12143   33 36502
Remove
QIAquick PCR purification kit   Qiagen #28104   34 36512
Remove
        7. Equipment for PCR, Transformation and Replica-pinning 35 36503
Remove
Thermal cycler   BioRad, iCycler     36 36504
Remove
Agarose gel electrophoresis   BioRad     37 36505
Remove
Electroporator   Bio-Rad GenePulser II     38 36506
Remove
0.2 cm electroporation cuvette   Bio-Rad     39 36507
Remove
42 °C water bath shaker   Innova 3100     40 36508
Remove
Beckman Coulter TJ-25 centrifuge   Beckman Coulter     41 36519
Remove
32 °C shaker   New Brunswick Scientific, USA     42 36509
Remove
32 °C plate incubator   Fisher Scientific     43 36510
Remove
RoToR-HDA benchtop robot   Singer Instruments     44 36511
Remove
96, 384 and 1,536 pin density pads   Singer Instruments     45 36513
Remove
96 or 384 long pins   Singer Instruments     46 36514
Remove
        8. Imaging Equipments 47 36515
Remove
Camera stand   Kaiser     48 36516
Remove
Digital camera, 10 megapixel   Any Vendor     49 36517
Remove
Light boxes, Testrite 16″ x 24″ units   Testrite     50 36527
Remove
        9. Pads or Plates Recycling 51 36518
Remove
10% bleach   Any Vendor     52 36520
Remove
70% ethanol   Any Vendor     53 36521
Remove
Sterile distilled water   Any Vendor     54 36522
Remove
Flow hood   Any Vendor     55 36523
Remove
Ultraviolet lamp   Any Vendor     56 36524
Remove
        10. Labware 57 36525
Remove
50 ml polypropylene tubes   Any Vendor     58 36526
Remove
1.5 ml micro-centrifuge tubes   Any Vendor     59 36528
Remove
250 ml conical flaks   VWR # 29140-045   60 36529
Remove
15 ml sterile culture tubes   Thermo Scientific # 366052   61 36530
Remove
Cryogenic vials   VWR # 479-3221   62 36531
Remove
Rectangular Plates   Singer Instruments     63 36532
Remove
96-well and 384-well microtitre plates   Singer Instruments Nunc   64 36533
Remove
Plate roller for sealing multi-well   Sigma #R1275   65 36535
Remove
plates   ABgene # AB-0580   66 36534
Remove
Adhesive plate seals   Fisher Scientific # 13-990-14   67 36537
Remove
-80 °C freezer   Any Vendor     68 36536
Remove

References

  1. Bandyopadhyay, S., Kelley, R., Krogan, N. J., Ideker, T. Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comput. Biol. 4, e1000065 (2008).
  2. Costanzo, M., Baryshnikova, A., Myers, C. L., Andrews, B., Boone, C. Charting the genetic interaction map of a cell. Curr. Opin. Biotechnol. 22, 66-74 (2011).
  3. Costanzo, M., et al. The genetic landscape of a cell. Science. 327, 425-4231 (2010).
  4. Fiedler, D., et al. Functional organization of the S. cerevisiae phosphorylation network. Cell. 136, 952-963 (2009).
  5. Roguev, A., et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science. 322, 405-4010 (2008).
  6. Schuldiner, M., et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell. 123, 507-519 (2005).
  7. Wilmes, G. M., et al. A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol. Cell. 32, 735-746 (2008).
  8. Babu, M., et al. Systems-level approaches for identifying and analyzing genetic interaction networks in Escherichia coli and extensions to other prokaryotes. Mol. Biosyst. 12, 1439-1455 (2009).
  9. Butland, G., et al. coli synthetic genetic array analysis. Nat. Methods. 5, 789-7895 (2008).
  10. Typas, A., et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell. 143, 1097-10109 (2010).
  11. Baba, T., et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006-200008 (2006).
  12. Babu, M., et al. Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways. PLoS Genet. 7, e1002377 (2011).
  13. Nichols, R. J., et al. Phenotypic landscape of a bacterial cell. Cell. 144, 143-156 (2011).
  14. Babu, M., Gagarinova, A., Greenblatt, J., Emili, A. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli. Methods Mol Biol. 765, 125-153 (2011).
  15. Datsenko, K. A., Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 97, 6640-665 (2000).
  16. Yu, D., et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 97, 5978-5983 (2000).
  17. Typas, A., et al. quantitative analyses of genetic interactions in. E. coli. Nat. Methods. 5, 781-787 (2008).
  18. Zeghouf, M., et al. Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. J. Proteome Res. 3, 463-468 (2004).
  19. Davierwala, A. P., et al. . , 1147-1152 (2005).
  20. Breslow, D. K., et al. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat. Methods. 5, 711-718 (2008).
  21. Babu, M., et al. Sequential peptide affinity purification system for the systematic isolation and identification of protein complexes from Escherichia coli. Methods Mol. Biol. 564, 373-400 (2009).
  22. Butland, G., et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature. 433, 531-537 (2005).
  23. Hu, P., Janga, S. C., Babu, M., Diaz-Mejia, J. J., Butland, G., et al. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol. 7, (2009).
  24. Anderson, R. P., Roth, J. R. Tandem genetic duplications in phage and bacteria. Annu. Rev. Microbiol. 31, 473-505 (1977).
  25. Boone, C., Bussey, H., Andrews, B. J. Exploring genetic interactions and networks with yeast. Nat. Rev. Genet. 8, 437-449 (2007).
  26. Collins, S. R., et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature. 446, 806-8010 (2007).
  27. Le Meur, N., Gentleman, R. Modeling synthetic lethality. Genome Biol. 9, R135 (2008).
  28. Tong, A. H., et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 294, 2364-2368 (2001).
  29. Tong, A. H., et al. Global mapping of the yeast genetic interaction network. Science. 303, 808-813 (2004).
  30. Wong, S. L., et al. Combining biological networks to predict genetic interactions. Proc. Natl. Acad. Sci. U.S.A. 101, 15682-15687 (2004).
  31. van Opijnen, T., Bodi, K. L., Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods. 6, 767-772 (2009).
  32. Gagarinova, A., Emili, A. Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Mol. Biosyst. 8, 1626-1638 (2012).
  33. Dewey, C. N., et al. Positional orthology: putting genomic evolutionary relationships into context. Brief Bioinform. 12, 401-412 (2011).
  34. St Onge, R. P., et al. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat. Genet. 39, 199-206 (2007).
check_url/fr/4056?article_type=t

Play Video

Citer Cet Article
Gagarinova, A., Babu, M., Greenblatt, J., Emili, A. Mapping Bacterial Functional Networks and Pathways in Escherichia Coli using Synthetic Genetic Arrays. J. Vis. Exp. (69), e4056, doi:10.3791/4056 (2012).

View Video