Summary

在小鼠的脑出血模型:注射自体血液或细菌胶原酶

Published: September 22, 2012
doi:

Summary

脑出血(ICH)的临床相关的动物模型,需要扩大我们的出血性中风的知识,并研究新的治疗策略。在这项研究中,我们描述和评价两种的ICH模式,实行单方面或自体全血或细菌胶原酶注射到小鼠基底神经节(纹状体)。

Abstract

自发性脑出血(ICH)定义了一个潜在的危及生命的神经系统毛病,占10%至15%的所有行程相关的住院和没有有效的治疗是迄今为止1,2。由于人类非物质文化遗产的异质性,不同的临床前模型中需要深入探讨未来的治疗策略3。实验性脑出血通常是在啮齿类动物中引起的脑实质内注射或自体血或细菌胶原酶4。选择合适的模型是根据出血的病理生理机制的诱导和伤害的进展。注血模型模拟了迅速进展的出血。另外,细菌胶原酶酶会破坏脑毛细血管基底膜,造成一个活跃的出血,一般发展几个小时。从可量化的结果血肿周围组织水肿和神经功能障碍米两种模式。在本研究中,我们描述和评价的改性双注入模型,自体全血6,以及一个ICH注入模型的细菌胶原酶7基底节雄性CD-1小鼠(纹状体区),这两者的目标。我们评估了诱导脑出血后神经功能的赤字和脑水肿24和72小时。脑内注射自体血液(30微升)或细菌胶原酶(0.075U)造成重现性神经功能缺损的小鼠,在24显着增加脑水肿和手术后72小时(对<0.05)。总之,这两种模式产生一致的出血性梗死和代表进行临床前的非物质文化遗产研究的基本方法。

Protocol

所有的程序进行,符合美国国立卫生研究院指南实验动物护理和使用的 Loma Linda大学的动物管理和使用委员会的批准。 1。术前准备工作无菌操作技术,被推荐用于所有的外科手术。立体定向设备消毒和手术前准备无菌手术工具。在所有的动物处理佩戴个人防护装备(PPE)。在手术过程中使用的加热垫,以保持动物的生理体温。 称量8…

Discussion

动物模型的脑出血(ICH)做出了巨大贡献深入的了解疾病的病理生理学,以及常用的开发和评估新的治疗策略在临床前的设置。实质内注射自体血或细菌胶原酶的产生ICH在啮齿类动物中的行之有效的方法。这两种方法在大鼠最初开发,但是,由于转基因和基因敲除菌株的迅速增加的可用性,小鼠成为必不可少的,以进一步阐明出血性脑损伤的机制8。

在人类中,基底?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项研究部分支持的NIH资助RO1NS053407,JH张。我们希望,感谢达蒙先生Klebe作出的宝贵贡献。

Materials

Material Company Catalogue Number Comment
Stereotactic Head Frame Stoelting Co. 51600
Nanomite Syringe Pump Harvard Apparatus PY2 70-2217
Hamilton Syringe Hamilton Company 1725RN (250 μl)
1701 RN (10 μl)
26 Gauge needle for 250 μl and 10 μl syringes.
Microdrill Fine Science Tools 18000-17
Microdrill burr Fine Science Tools 19007-09 0.9 mm diameter
Collagenase Type VII-S Sigma-Aldrich C2399
Microhematocrit Capillary Tubes Fisher Scientific 22-362-574 unheparinized
Bone Wax Ethicon W31
Suture Ethicon 1676G
Ketamine JHP Pharmaceuticals 42023-115-10 Ketalar
Xylazine LLOYD Laboratories 139-236 AnaSed

References

  1. Broderick, J. P. Guidelines for the management of spontaneous intracerebral hemorrhage: A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 30, 905-915 (1999).
  2. Qureshi, A. I., Mendelow, A. D., Hanley, D. F. Intracerebral haemorrhage. Lancet. 373, 1632-1644 (2009).
  3. MacLellan, C. L., Silasi, G., Auriat, A. M., Colbourne, F. Rodent models of intracerebral hemorrhage. Stroke. 41, 95-98 (2010).
  4. James, M. L., Warner, D. S., Laskowitz, D. T. Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care. 9, 139-152 (2008).
  5. MacLellan, C. L. Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J. Cereb. Blood Flow Metab. 28, 516-525 (2008).
  6. Belayev, L. Experimental intracerebral hemorrhage in the mouse: histological, behavioral, and hemodynamic characterization of a double-injection model. Stroke. 34, 2221-2227 (2003).
  7. Clark, W., Gunion-Rinker, L., Lessov, N., Hazel, K. Citicoline treatment for experimental intracerebral hemorrhage in mice. Stroke. 29, 2136-2140 (1998).
  8. Nakamura, T. Intracerebral hemorrhage in mice: model characterization and application for genetically modified mice. J. Cereb. Blood Flow Metab. 24, 487-494 (2004).
  9. Schallert, T. Behavioral tests for preclinical intervention assessment. NeuroRx. 3, 497-504 (2006).
  10. Hartman, R., Lekic, T., Rojas, H., Tang, J., Zhang, J. H. Assessing functional outcomes following intracerebral hemorrhage in rats. Brain Res. 1280, 148-157 (2009).
  11. Hua, Y. Behavioral tests after intracerebral hemorrhage in the rat. Stroke. 33, 2478-2484 (2002).
  12. Tang, J. Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J. Cereb. Blood Flow Metab. 24, 1133-1145 (2004).
  13. Ma, Q. Vascular adhesion protein-1 inhibition provides antiinflammatory protection after an intracerebral hemorrhagic stroke in mice. J. Cereb. Blood Flow Metab. , (2010).
  14. Bullock, R., Mendelow, A. D., Teasdale, G. M., Graham, D. I. Intracranial haemorrhage induced at arterial pressure in the rat. Part 1: Description of technique, ICP changes and neuropathological findings. Neurol Res. 6, 184-188 (1984).
  15. Yang, G. Y., Betz, A. L., Chenevert, T. L., Brunberg, J. A., Hoff, J. T. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J. Neurosurg. 81, 93-102 (1994).
  16. Rosenberg, G. A., Mun-Bryce, S., Wesley, M., Kornfeld, M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 21, 801-807 (1990).
  17. Alkayed, N. J. Gender-linked brain injury in experimental stroke. Stroke. 29, 159-165 (1998).
  18. Saha, J. K., Xia, J., Grondin, J. M., Engle, S. K., Jakubowski, J. A. Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: mechanisms and implications for preclinical models. Exp Biol Med. (Maywood). 230, 777-784 (2005).
  19. Fujiwara, N. Effect of normobaric oxygen therapy in a rat model of intracerebral hemorrhage. Stroke. 42, 1469-1472 (2011).
  20. Khatibi, N. H. Isoflurane posttreatment reduces brain injury after an intracerebral hemorrhagic stroke in mice. Anesth Analg. 113, 343-348 (2011).
check_url/fr/4289?article_type=t

Play Video

Citer Cet Article
Krafft, P. R., Rolland, W. B., Duris, K., Lekic, T., Campbell, A., Tang, J., Zhang, J. H. Modeling Intracerebral Hemorrhage in Mice: Injection of Autologous Blood or Bacterial Collagenase. J. Vis. Exp. (67), e4289, doi:10.3791/4289 (2012).

View Video