Summary

MBPベースタギング戦略によってMgm101組換えタンパク質の調製

Published: June 25, 2013
doi:

Summary

酵母ミトコンドリア核様体タンパク質、Mgm101は、大きなオリゴマーの環を形成するRAD52型組換えタンパク質である。プロトコルは、陽イオン交換およびサイズ​​排除クロマトグラフィーと連結マルトース結合タンパク質(MBP)タギング方式を使用して可溶性組換えMgm101を調製するために記載されている。

Abstract

MGM101遺伝子はミトコンドリアDNAの維持におけるその役割のために20年前に同定された。いくつかのグループからの研究がMgm101タンパク質は、ミトコンドリアDNAの組換え修復に関与することが示唆されている。最近の研究は、Mgm101がRAD52型組換えタンパク質ファミリーに関連することが示されている。これらのタンパク質は、大きなオリゴマーの環を形成し、相同な一本鎖DNA分子のアニーリングを促進する。しかし、Mgm101の特徴は、組換えタンパク質を産生することが困難によって妨げられてきた。ここでは、組換えMgm101の調製のための信頼性のある手順を説明する。マルトース結合タンパク質(MBP)タグ付きMgm101は、第大腸菌で発現される。融合タンパク質は、最初アミロースアフ​​ィニティークロマトグラフィーにより精製する。タンパク質分解切断によって放出された後、Mgm101は、陽イオン交換クロマトグラフィーによってMBPから分離される。単分散Mgm101その後、得られたサイズ排除クロマトグラフィーによる。細菌培養のリットルあたりMgm101の〜0.87ミリグラムの収量は日常的に得ることができる。換えMgm101は、DNAの最小の汚染されています。調製したサンプルが正常にMgm101の、生化学的構造及び単粒子像分析のために使用される。このプロトコルは、ミスフォールドおよび細菌細胞に対して毒性することができる他の大きなオリゴマーDNA結合タンパク質の調製のために使用することができる。

Introduction

相同組換えは、二本鎖切断(DSBの)と鎖間架橋の修復のための、および縮小複製フォーク1からDNA複製の再開始のために重要である。従来の相同組換えでは、中央の反応は、原核生物においてRecAタンパク質、及びRad51の1-3および真核生物におけるDMC1含むATP依存性リコンビナーゼにより触媒される。これらのリコンビナーゼは、二本鎖DNAテンプレート( 図1、左パネル)4-7内の相同性検索と鎖侵入を開始するために不可欠である一本鎖DNA上で核タンパク質フィラメントを形成。従来方式に加えて、相同組換えはまたRecA/Rad51-independent方法( 図1、右パネル)で行うことができる。例えば、酵母RAD52とRad59タンパク質は直接二本鎖DNA切断の切除によって公開され、相補鎖DNA鎖のアニーリングを触媒することができます。歌うと呼ばれるこの再結合過程、ル鎖がアニーリング、一般的に相同な二本鎖DNAテンプレートとのペアリングは含まれません。アニール後、異種尾はエキソヌクレアーゼとニックゲノム継続8-10を復元するために連結されることにより除去される。一本鎖アニーリング機構により修復は、しばしば直接繰り返さ地域間のゲノム配列の欠失を伴っている。

RAD52はバクテリオ11の間で普及している組換えタンパク質の多様なグループに属しています。これらのタンパク質はまた、相同な一本鎖DNA分子のアニーリングを促進するそれらの活性に基づいて、一本鎖アニーリングタンパク質(SSAPs)として知られている。最高の特徴バクテリオファージSSAPsはRedβとラクトコッカスファージul36からプロファージRACおよびサックタンパク質からバクテリオファージλとP22、RecTをからErfにある。類似性が事実上undetectですがSSAPsは、構造的、典型的なβ-β-β-α倍によって特徴付けられる彼らの主要なシーケンスでできる。 10彼らは、すべてのフォーム大ホモオリゴマーリング- 体外 12-14 14回対称。この特徴的な高次構造、組織の機能的な意味はよく理解されていない。

私たちは、ミトコンドリアゲノムに相同組換えのメカニズムを理解することに興味を持っています。我々は以前に、サッカロミセス·セレビシエ 15内のmtDNAの維持に必須であるMGM101遺伝子を同定した。MGM101は 、その後、ミトコンドリア核様体と関連することが見出され、DNA損傷剤に対するミトコンドリアの許容16に必要とされる。しかし、Mgm101の研究は、組換えMgm101を生産する難しさによって10年で戻って開催されています。我々は最近、E.から大量に可溶Mgm101を生産することに成功しましたMBP融合戦略を使用して大腸菌 。これは、Mgm101株式を発揮することができましたタンパク質17,18のRAD52-家族と生化学的および構造的類似性。本報告では、三段階精製法は均質Mgm101for生化学的および構造解析します( 図2)を生成し、これに記載されています。

Protocol

これまでの研究では、Mgm101の最初のアミノ末端22残基がミトコンドリア19へのインポート後に切断されることが示されている。 大腸菌における発現のために、最初の22コドンを欠くMGM101オープンリーディングフレームをPCRで増幅された発現ベクター物pMAL-C2Eの修正版でマルトース結合タンパク質(MBP)をコードする雄配列の下流に配置された。これは、プレシジョ?…

Representative Results

Mgm101はミトコンドリアにおけるRAD52関連の組換えタンパク質である。 RAD52が広くミトコンドリアDNA組換え( 図1)におけるその役割のために研究されてきた。組換えMgm101は、3段階の手順( 図2)により調製することができる。これは、Mgm101が可溶型で発現することができ、その後、タンパク質分解的切断( 図3)により、タグから放出MBP-タグ付け戦略の?…

Discussion

これは、Eから安定した、ネイティブ換えMgm101タンパク質を産生するために課題となっている細菌細胞におけるその不溶性が原因の可能性大腸菌 。本稿では、MBP融合戦略はタンパク質が適度に高いレベルで発現されることができることを示している。ネガティブ染色透過型電子顕微鏡およびサイズ排除クロマトグラフィーを用いて、我々は以前にMBP-融合タンパク質は、インビ…

Divulgations

The authors have nothing to disclose.

Acknowledgements

私たちは、透過型電子顕微鏡で助けステファンウィルキンスに感謝。この作品は、健康グラントR01AG023731の国立研究所によってサポートされていました。

Materials

Name of Reagent/Material Company Catalog Number Comments
Expression vector pMAL-c2E New England Biolabs #N8066S  
PreScission Protease GE Healthcare Life Sciences #27-0843-01  
BL21-CodonPlus(DE3)-RIL cells Strategene #230245  
Leupeptin Roche Applied Science #11034626001  
Pepstatin Roche Applied Science #11359053001  
Phenylmethylsulfonyl fluoride (PMSF) Roche Applied Science #10837091001  
DNAse I Sigma #DN25-1G  
Isopropyl β-D-1-thiogalactopyranoside (IPTG) Roche Applied Science #11411446001  
Amylose resin New England Biolabs #E8021L  
Econo-Column chromatography column BIO-RAD #7372512  
Bio-Scale Mini Macro-Prep High S cartridge (1 ml) BIO-RAD #732-4130  
VIVASPIN 15R Ultrafiltration spin column (10,000 MWCO) Sartorius Stedium #VS15RH02  
Superose 6 prep grade column Amersham Bioscirnces #17-0489-01  
VIVASPIN 6 Ultrafiltration spin column (5,000 MWCO) Sartorius Stedium #VS0611  

References

  1. San Filippo, J., Sung, P., Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229-257 (2008).
  2. Bishop, D. K., Park, D., Xu, L., Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell. 69, 439-456 (1992).
  3. Shinohara, A., Ogawa, H., Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell. 69, 457-470 (1992).
  4. Passy, S. I., et al. Human Dmc1 protein binds DNA as an octameric ring. Proc. Natl. Acad. Sci. U.S.A. 96, 10684-10688 (1999).
  5. Story, R. M., Weber, I. T., Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature. 355, 318-325 (1992).
  6. Yu, X., Jacobs, S. A., West, S. C., Ogawa, T., Egelman, E. H. Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc. Natl. Acad. Sci. U.S.A. 98, 8419-8424 (2001).
  7. Conway, A. B., et al. Crystal structure of a Rad51 filament. Nat. Struct. Mol. Biol. 11, 791-796 (2004).
  8. Bai, Y., Davis, A. P., Symington, L. S. A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Génétique. 153, 1117-1130 (1999).
  9. Bai, Y., Symington, L. S. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 10, 2025-2037 (1996).
  10. Paques, F., Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349-404 (1999).
  11. Lopes, A., Amarir-Bouhram, J., Faure, G., Petit, M. A., Guerois, R. Detection of novel recombinases in bacteriophage genomes unveils Rad52, Rad51 and Gp2.5 remote homologs. Nucleic Acids Res. 38, 3952-3962 (2010).
  12. Poteete, A. R., Sauer, R. T., Hendrix, R. W. Domain structure and quaternary organization of the bacteriophage P22 Erf protein. J. Mol. Biol. 171, 401-418 (1983).
  13. Passy, S. I., Yu, X., Li, Z., Radding, C. M., Egelman, E. H. Rings and filaments of beta protein from bacteriophage lambda suggest a superfamily of recombination proteins. Proc. Natl. Acad. Sci. U.S.A. 96, 4279-4284 (1999).
  14. Ploquin, M., et al. Functional and structural basis for a bacteriophage homolog of human RAD52. Curr. Biol. 18, 1142-1146 (2008).
  15. Chen, X. J., Guan, M. X., Clark-Walker, G. D. MGM101, a nuclear gene involved in maintenance of the mitochondrial genome in Saccharomyces cerevisiae. Nucl. Acids Res. 21, 3473-3477 (1993).
  16. Meeusen, S., et al. Mgm101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA. J. Cell Biol. 145, 291-304 (1999).
  17. Mbantenkhu, M., et al. Mgm101 is a Rad52-related protein required for mitochondrial DNA recombination. J. Biol. Chem. 286, 42360-42370 (2011).
  18. Nardozzi, J. D., Wang, X., Mbantenkhu, M., Wilkens, S., Chen, X. J. A properly configured ring structure is critical for the function of the mitochondrial DNA recombination protein. Mgm101. J. Biol. Chem. 287, 37259-37268 (2012).
  19. Zuo, X., Xue, D., Li, N., Clark-Walker, G. D. A functional core of the mitochondrial genome maintenance protein Mgm101p in Saccharomyces cerevisiae determined with a temperature-conditional allele. FEMS Yeast Res. 7, 131-140 (2007).
  20. Itoh, K., et al. DNA packaging proteins Glom and Glom2 coordinately organize the mitochondrial nucleoid of Physarum polycephalum. Mitochondrion. 11, 575-586 (2011).
  21. Janicka, S., et al. A RAD52-like single-stranded DNA binding protein affects mitochondrial DNA repair by recombination. Plant J. 72, 423-435 (2012).
check_url/fr/50448?article_type=t

Play Video

Citer Cet Article
Wang, X., Mbantenkhu, M., Wierzbicki, S., Chen, X. J. Preparation of the Mgm101 Recombination Protein by MBP-based Tagging Strategy. J. Vis. Exp. (76), e50448, doi:10.3791/50448 (2013).

View Video