Summary

ケーススタディとして、タバコにおける一過性タンパク質発現:実験アプローチのデザインを使用した複雑系のキャラクタリゼーション

Published: January 31, 2014
doi:

Summary

我々は、植物におけるモノクローナル抗体およびレポータータンパク質の一過性発現に対する導入遺伝子の調節エレメント、植物の成長および発達パラメータ、およびインキュベーション条件の影響を決定し、モデル化するのに使用することができる実験アプローチの設計を記載している。

Abstract

植物は、低コスト、拡張性、安全性などのバイオ医薬品の生産のための複数の利点を提供します。一過性の発現は、短期開発と生産時間の付加的な利点を提供していますが、発現レベルは、このように適正製造基準の文脈における規制の懸念を生じさせるバッチ間で大きく異なります。我々は、バッチ間の発現の変動性に発現中に調節発現構築物の要素、植物の成長および発達パラメータ、およびインキュベーション条件、などの主要な要因の影響を決定するための実験計画法(DoE)アプローチの設計を用いる。私たちは、モデル抗HIVモノクローナル抗体(2G12)、蛍光マーカータンパク質(DsRedの)を発現する植物をテストしました。我々は、モデルの特定のプロパティを選択するための理論的根拠を議論し、その潜在的な制限を識別します。一般的なアプローチは、容易に他の問題に転送することができるため、モデルaの原理広く適用日時:知識ベースのパラメータの選択、より小さなモジュールに最初の問題を分割することにより、複雑さの低減、最適な実験の組み合わせのソフトウェア誘導セットアップと段階的なデザイン増強。そのため、方法論だけでなく、植物におけるタンパク質発現を特徴付けるためだけでなく、機械論的な説明を欠いている他の複雑なシステムの調査のために有用である。パラメータ間の相互接続性を記述した予測式は、他の複雑なシステムのための機械論的なモデルを確立するために使用することができます。

Introduction

植物が成長する安価であるため、植物における生物薬剤学的タンパク質の産生が有利で ​​あり、プラットフォームは、単により多くの植物を成長させることによってスケールアップすることができ、ヒト病原体1,2を複製することができない。 アグロバクテリウムツメファシエンスと葉の浸潤に例えば基づく一過性発現戦略DNA送達および精製された製品の納入の時点までの時間が2ヶ月未満〜3年に短縮されるため、追加の利点を提供します。一過性発現は、機能喪失型変異体を補完するか、タンパク質相互作用4-6を調査する能力についての遺伝子を試験するために、例えば 、機能分析のために使用される。しかしながら、一過性発現レベルは、トランスジェニック植物7-9における発現レベルよりも大きいバッチ間の変動を示す傾向がある。これは、バイオ医薬品製造プロセスは、一過性発現のWiに基づいて、可能性を減少させる再現性が重要な品質属性であるとリスク評価10される場合がありますので、適正製造基準(GMP)のコンテキストで承認されちゃう。このような変化も、研究者が調査する予定の相互作用をマスクすることができます。したがって、我々は、植物において一過性発現レベルに影響を与える主な要因を特定するために、高品質の定量的な予測モデルを構築するために設定してください。

1ファクターを1つずつ割り当てる(OFAT)アプローチは、多くの場合、実験11の結果( レスポンス )上の特定のパラメータ( 要因 )の影響( 効果特徴づけるために使用されている。調査( 実験 )中の個々のテスト( 実行試験している要因によって張ら潜在的な面積( 設計空間 )を介して文字列に真珠のように整列されますので、しかし、これは次善である。設計空間のカバレッジ、したがって実験から得られる情報の程度である図1A 12に示すように、低い。 図1B 13に示すように、さらに、異なる因子( 因子相互作用 )間の相互依存性が悪くモデルおよび/ ​​または偽最適の予測をもたらす隠されたままにすることができる。

上述の欠点は、複数の因子が二つの実験14の間に変化することを意味し、実験の実行は、設計空間の全体にわたってより均一に散乱された実験計画法(DoE)アプローチの設計を使用することによって回避することができる。そこの混合物は、スクリーニングの要因( 要因計画 )に特化したデザインがあるとレスポンス( 応答曲面法、RSM S)15上の要因の影響の定量。さらに、中央のRSMは、複合デザインとして実現できるだけでなく、実行の選択のための異なる基準を適用することができ、特殊なソフトウエアを使用することによって効果的に達成することができる。例えば、いわゆるD-optimalitY基準はIV -最適性基準が設計空間15,16を通して最も低い予測分散を実現するランを選択し、一方、そのように得られたモデルの係数での誤差を最小化するために実行を選択します。我々はここで説明するRSMは、植物における一過性タンパク質発現の正確な定量を可能にするが、それは簡単にいくつかの(〜5-8)、数値の要因( 例えば 、温度、時間、濃度)、および2〜(数に関係する任意のシステムに転送することができます- 4)機械論的な説明がモデルに使用できないか、複雑すぎる合式因子( 例えばプロモーター 、色)が。

実験計画アプローチは農業科学の起源が、それは、それが信頼性のあるデータを得るために必要な実行回数を低減し、複雑なプロセスの記述的モデルを生成するのに有用である任意の状況に転送可能であるため、他の領域に広がっている。これは、順番には、「指導における実験計画の包含につながっている業界は、ヒト用医薬品(ICH)17を登録するための技術要件の調和に関する国際会議で発表さQ8(R2)の医薬品開発は「。エネルギー省は、現在の科学的研究と産業18で広く使用されているが、介護は時に注意が必要複数線形回帰モデル( ベースモデル )のための不適当な多項式の次数を選択しているため、計画、実験の実行が正しく、すべての因子の影響をモデル化するために追加の実行の必要性が生じる可能性があります。また、破損または欠落したデータが正しくないモデルと欠陥のあるを生成予測、さらには、プロトコルと議論のセクション18で説明したようにいずれのモデル構築の試みを防ぐことができます。プロトコル]セクションで、我々は最初に、RSMベースの実験のための最も重要な計画手順を設定し、エネルギー省に基づいて設計を説明しますソフトウェアのDesignExpert V8.1は。しかし、同じようなデザインは、他のソフトウェアincludiを使用して構築することができますNG JMP、Modde、およびSTATISTICA。実験手順は、データ分析·評価するための指示が続きます。

図1
図1。 OFATとDOEの比較。A。実験(黒、赤と青の円)での時間(OFAT)にして1つの要素の逐次変化は設計空間(斜線領域)の低カバレッジを実現しています。これとは対照的に、実験(DOE)戦略(緑の円)のデザインを使用して、一度に複数の因子の変動が取材し、得られたモデル。Bをこのように精度が向上します。偏った設計空間カバレッジはOFAT実験(黒丸)も、最適な動作領域(赤)を特定し、次善の策(大きな黒丸)を予測するために失敗する可能性があることを意味し、一方、エネルギー省のstrategiES(黒い星)が好ましい条件(大きな黒い星)を識別する可能性が高くなります。

Protocol

1。エネルギー省戦略の計画デザインに含めるための関連要因と応答を識別します。 測定のための1または複数の応答を定義します。ここで、2G12およびDsRedの発現レベルを使用した(μg/ ​​ml)を、関連するとみなさ検出可能な最小の差を含む(10および20μg/ml/ mlのそれぞれ)とシステムの推定標準偏差の近似値(4,8μgの/ mLであった)先の実験に基づく。 入手可能な文献?…

Representative Results

異なるプロモーターとの5'UTRを使用して一過性発現の際のDsRedの蓄積のための記述的モデル 葉の抽出物中のDsRed蛍光は、組換えタンパク質の発現レベルを示すために使用されたので、実験計画戦略の応答として使用した。我々は、関連すると考え検出可能な最小の違いは、20μg/ mlのであり、システムの推定標準偏差は、最初の実験に基づいて8μg/ mlのだっ?…

Discussion

リソースは、多くの場合、希少かつ高価であるため、すべての実験は慎重な計画が必要です。計画段階( 例えば、すべての重要な要因の相互作用をカバーしていないベースモデルを選択する)中にエラーが発生し、実質的に生じたモデルの予測力を減少させるため、実験全体を切り下げることができるので、これはエネルギー省の戦略のために特に当てはまります。しかしながら、こ…

Divulgations

The authors have nothing to disclose.

Acknowledgements

著者らは、この研究で使用したタバコ植物を栽培するためにPPAMの植物発現ベクターとイブラヒムアルAmediを提供するための博士トーマスラーデマッヘルに感謝しています。私たちは、原稿を編集すると、彼の援助のためリチャード·M·ワイマンに感謝したいと思います。この作業は、部分的には、欧州研究評議会上級助成「未来ファーマ」、提案番号269110とフラウンホーファーZukunftsstiftung(フラウンホーファー未来財団)によって資金を供給された。

Materials

Design-Expert(R) 8 Stat-Ease, Inc. n.a. DoE software
Tryptone Carl Roth GmbH 8952.2 Media component
Yeast extract Carl Roth GmbH 2363.2 Media component
Sodium chloride Carl Roth GmbH P029.2 Media component
Ampicillin Carl Roth GmbH K029.2 Antibiotic
Agar-Agar Carl Roth GmbH 5210.2 Media component
Escherichia coli K12 DH5a Life technologies 18263-012 Microorganism
pPAM GenBank AY027531 Cloning/expression vector; 
NucleoSpin Plasmid  MACHEREY-NAGEL GmbH 740588.250 Plasmid DNA isolation kit
NucleoSpin Gel and PCR Clean-up MACHEREY-NAGEL GmbH 740609.250 Plasmid DNA purification kit
NanoDrop 2000 Thermo Scientific n.a. Spectrophotometer
NcoI New England Biolabs Inc. R3193L Restrictionendonuclease
EcoRI New England Biolabs Inc. R3101L Restrictionendonuclease
AscI New England Biolabs Inc. R0558L Restrictionendonuclease
NEB 4 New England Biolabs Inc. B7004S Restrictionendonuclease buffer
TRIS Carl Roth GmbH 4855.3 Media component
Disodium tetraborate Carl Roth GmbH 4403.3 Media component
EDTA Carl Roth GmbH 8040.2 Media component
Agarose Carl Roth GmbH 6352.4 Media component
Bromophenol blue Carl Roth GmbH A512.1 Color indicator
Xylene cyanol Carl Roth GmbH A513.1 Color indicator
Glycerol Carl Roth GmbH 7530.2 Media component
Mini-Sub Cell GT Cell BioRad 170-4406 Gel electrophoresis chamber
Agrobacterium tumefaciens strain GV3101:pMP90RK DSMZ 12365 Microorganism
Electroporator 2510 Eppendorf 4307000.658 Electroporator
Beef extract Carl Roth GmbH X975.2 Media component
Peptone Carl Roth GmbH 2365.2 Media component
Sucrose Carl Roth GmbH 4621.2 Media component
Magnesium sulfate Carl Roth GmbH 0261.3 Media component
Carbenicillin Carl Roth GmbH 6344.2 Antibiotic
Kanamycin Carl Roth GmbH T832.3 Antibiotic
Rifampicin Carl Roth GmbH 4163.2 Antibiotic
FWD primer Eurofins MWG Operon n.a. CCT CAG GAA GAG CAA TAC
REV primer Eurofins MWG Operon n.a. CCA AAG CGA GTA CAC AAC
2720 Thermal cycler Applied Biosystems 4359659 Thermocycler
RNAfold webserver University of Vienna n.a. Software
Ferty 2 Mega Kammlott 5.220072 Fertilizer
Grodan Rockwool Cubes 10x10cm Grodan n.a. Rockwool block
Greenhouse n.a. n.a. For plant cultivation
Phytotron Ilka Zell n.a. For plant cultivation
Omnifix-F Solo B. Braun 6064204 Syringe
Murashige and Skoog salts Duchefa M 0222.0010 Media component
Glucose Carl Roth GmbH 6780.2 Media component
Acetosyringone Sigma-Aldrich D134406-5G Phytohormon analogon
 BioPhotometer plus Eppendorf  6132 000.008 Photometer
Osram cool white 36 W Osram 4930440 Light source
Disodium phosphate Carl Roth GmbH  4984.3  Media component
Centrifuge 5415D Eppendorf 5424 000.410 Centrifuge
Forma -86C ULT freezer ThermoFisher 88400 Freezer
Synergy HT BioTek SIAFRT Fluorescence plate reader
Biacore T200 GE Healthcare n.a. SPR device
Protein A Life technologies 10-1006 Antibody binding protein
HEPES Carl Roth GmbH 9105.3 Media component
Tween-20 Carl Roth GmbH 9127.3 Media component
2G12 antibody Polymun AB002 Reference antibody

References

  1. Fischer, R., Emans, N. Molecular farming of pharmaceutical proteins. Transgenic research. 9, 277-299 (2000).
  2. Commandeur, U., Twyman, R. M., Fischer, R. The biosafety of molecular farming in plants. AgBiotechNet. 5, 9 (2003).
  3. Shoji, Y., et al. A plant-based system for rapid production of influenza vaccine antigens. Influenza Other Resp. 6, 204-210 (2012).
  4. Goodin, M. M., Zaitlin, D., Naidu, R. A., Lommel, S. A. Nicotiana benthamiana: Its history and future as a model for plant-pathogen interactions. Mol Plant Microbe In. 21, 1015-1026 (2008).
  5. Berg, R. H., Beachy, R. N. Fluorescent protein applications in plants. Method Cell Biol. 85, 153 (2008).
  6. Chung, S. M., Vaidya, M., Tzfira, T. Agrobacterium is not alone: gene transfer to plants by viruses and other bacteria. Trends in plant science. 11, 1-4 (2006).
  7. Sheludko, Y. V., Sindarovska, Y. R., Gerasymenko, I. M., Bannikova, M. A., Kuchuk, N. V. Comparison of several Nicotiana species as hosts for high-scale Agrobacterium-mediated transient expression. Biotechnology and Bioengineering. 96, 608-614 (2007).
  8. Wydro, M., Kozubek, E., Lehmann, P. Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochimica Polonica. 53, 289-298 (2006).
  9. Buyel, J. F., Fischer, R. Processing heterogeneous biomass: Overcoming the hurdles in model building. Bioengineered. 4, (2013).
  10. Fischer, R., Schillberg, S., Hellwig, S., Twyman, R. M., Drossard, J. GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol Adv. 30, 434-439 (2012).
  11. Daniel, C. One-at-a-time plans. Journal of the American Statistical Association. 68, 353-360 (1973).
  12. Czitrom, V. One-Factor-at-a-Time versus Designed Experiments The American Statistician. 53, 6 (1999).
  13. Anderson, M. J., Kraber, S. L. Keys to successful designed experiments. ASQ – The global voice of quality. 6, 6 (1999).
  14. Montgomery, D. C. . Design and Analysis of Experiments. , (2007).
  15. Myers, R. H., Montgomery, D. C., Anderson-Cook, C. M. . Response Surface Methodology: Process and Product Optimization Using Designed Experiments. , (2009).
  16. Piepel, G. F. Programs for generating extreme vertices and centroids of linearly constrained experimental regions. J Qual Technol. 20, 15 (1988).
  17. . . FDA. , (2009).
  18. Shivhare, M., McCreath, G. Practical Considerations for DoE Implementation in Quality By Design. BioProcess International. 8, 9 (2010).
  19. Buyel, J. F., Fischer, R. Predictive models for transient protein expression in tobacco (Nicotiana tabacum L.) can optimize process time, yield, and downstream costs. Biotechnology and bioengineering. 109, 2575-2588 (2012).
  20. Buyel, J. F., Kaever, T., Buyel, J. J., Fischer, R. Predictive models for the accumulation of a fluorescent marker protein in tobacco leaves according to the promoter/5’UTR combination. Biotechnology and bioengineering. 110, 471-482 (2013).
  21. Anderson, M. J., Whitcomb, P. J. . DOE Simplified: Practical Tools for Effective Experimentation. , (2000).
  22. Anderson, M. J., Whitcomb, P. J. . Response Surface Methods Simplified. , (2005).
  23. De Gryze, S., Langhans, I., Vandebroek, M. Using the correct intervals for prediction: A tutorial on tolerance intervals for ordinary least-squares regression. Chemometr Intell Lab. 87, 147-154 (2007).
  24. . . Plasmid DNA purification User manual. , (2012).
  25. . . PCR clean-up Gel extraction User manual. , (2012).
  26. . . Quick Ligation Protocol. 4, (2009).
  27. Inoue, H., Nojima, H., Okayama, H. High-Efficiency Transformation of Escherichia-Coli with Plasmids. Gene. 96, 23-28 (1990).
  28. Main, G. D., Reynolds, S., Gartland, J. S. Electroporation protocols for Agrobacterium. Methods in Molecular Biology. 44, 405-412 (1995).
  29. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R., Hofacker, I. L. The Vienna RNA websuite. Nucleic acids research. 36, 70-74 (2008).
  30. Howell, S., Kenmore, M., Kirkland, M., Badley, R. A. High-density immobilization of an antibody fragment to a carboxymethylated dextran-linked biosensor surface. J Mol Recognit. 11, 200-203 (1998).
  31. Newcombe, A. R., et al. Evaluation of a biosensor assay to quantify polyclonal IgG in ovine serum used for the production of biotherapeutic antibody fragments. Process Biochem. 41, 842-847 (2006).
  32. Peixoto, J. L. Hierarchical Variable Selection in Polynomial Regression-Models. Am Stat. 41, 311-313 (1987).
  33. Peixoto, J. L. A Property of Well-Formulated Polynomial Regression-Models. Am Stat. 44, 26-30 (1990).
  34. Sanders, P. R., Winter, J. A., Barnason, A. R., Rogers, S. G., Fraley, R. T. Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic acids research. 15, 1543-1558 (1987).
  35. Ma, J. K. C., et al. Generation and Assembly of Secretory Antibodies in Plants. Science. 268, 716-719 (1995).
  36. Wycoff, K. L. Secretory IgA antibodies from plants. Curr Pharm Design. 11, 2429-2437 (2005).
  37. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., Gray, T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411-2423 (1995).
check_url/fr/51216?article_type=t

Play Video

Citer Cet Article
Buyel, J. F., Fischer, R. Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study. J. Vis. Exp. (83), e51216, doi:10.3791/51216 (2014).

View Video