Summary

En<em> In vitro</em> Vækstdvale Model af østrogen-følsomme brystkræft i knoglemarven: Et værktøj for molekylære mekanisme Studier og Hypotese Generation

Published: June 30, 2015
doi:

Summary

We developed an in vitro model of dormancy in the bone marrow for estrogen-sensitive breast cancer cells. The goal of this protocol is to demonstrate use of the model for the study of the molecular and cellular biology of dormancy and for generation of hypotheses for subsequent testing in vivo.

Abstract

The study of breast cancer dormancy in the bone marrow is an exceptionally difficult undertaking due to the complexity of the interactions of dormant cells with their microenvironment, their rarity and the overwhelming excess of hematopoietic cells. Towards this end, we developed an in vitro 2D clonogenic model of dormancy of estrogen-sensitive breast cancer cells in the bone marrow. The model consists of a few key elements necessary for dormancy. These include 1) the use of estrogen sensitive breast cancer cells, which are the type likely to remain dormant for extended periods, 2) incubation of cells at clonogenic density, where the structural interaction of each cell is primarily with the substratum, 3) fibronectin, a key structural element of the marrow and 4) FGF-2, a growth factor abundantly synthesized by bone marrow stromal cells and heavily deposited in the extracellular matrix. Cells incubated with FGF-2 form dormant clones after 6 days, which consist of 12 or less cells that have a distinct flat appearance, are significantly larger and more spread out than growing cells and have large cytoplasm to nucleus ratios. In contrast, cells incubated without FGF-2 form primarily growing colonies consisting of >30 relatively small cells. Perturbations of the system with antibodies, inhibitors, peptides or nucleic acids on day 3 after incubation can significantly affect various phenotypic and molecular aspects of the dormant cells at 6 days and can be used to assess the roles of membrane-localized or intracellular molecules, factors or signaling pathways on the dormant state or survival of dormant cells. While recognizing the in vitro nature of the assay, it can function as a highly useful tool to glean significant information about the molecular mechanisms necessary for establishment and survival of dormant cells. This data can be used to generate hypotheses to be tested in vivo models.

Introduction

Bryst kræftceller metastaserer til knoglemarven før sygdommen er detekterbar 1, så snart små tumorer udvikle blodkar 2,3. Den metastatiske proces er hurtig men ineffektiv. Celler indtaste nye blodkar hurtigt på millioner per dag 4, men kun få overlever turen til fjerne organer 5. Ikke desto mindre, nogle mikrometastaser overleve i knoglen og kan findes som enkelte celler eller små celleklumper i knoglemarvsaspirater fra nydiagnosticerede patienter 1. Disse celler modstå adjuverende kemoterapi, som administreres for selve formålet med at fjerne dem 6. Denne modstand er udstyret, betydeligt, ved at overleve signalering initieret af interaktioner med knoglemarvens mikromiljø 7,8. Mikrometastaser kan findes i omkring en tredjedel af kvinder med lokaliseret brystcancer og udgør en uafhængig indikator for overlevelse ved analyse ved univariate analyse 9. Nogle micrometastases er vækst indledt, men tilbagefald mønstre afhænger af celletype. Patienter med kræft triple negativ brystkræft tendens til at gentage sig på mellem 1 til 4 år, hvilket tyder på dårlig kontrol over sovende tilstand. Andre celletyper, herunder ER / PR + celler, kan forblive i dvale i op til 20 år, med en stabil, kontinuerlig sats for fornyet 10. Mens forskelle i hviletilstand genekspression signaturer mellem ER + og ER- bryst cellelinjer og tumorer afspejler forskellige hviletilstand potentialer 11, interaktioner med knoglemarvsstroma sandsynligvis udgør et væsentligt bidrag til hviletilstand.

Studiet af hviletilstand in vivo er usædvanligt vanskeligt, fordi micrometastases er sjældne og er undertal hæmatopoietiske celler med mere end 10 6 fold. Derfor skal de relevante modeller genereres der giver in vitro data, der kan foreslå mekanismer og generere testbare hypoteser in vivo. En række hviletilstand modeller, herunder Mathematisk modeller 12,13, in vitro modeller 7,8,14,15, in vivo xenograftmodeller 16, kombinationer af in vitro og xenograftmodeller 17,18 og spontane tumor og metastase-modeller 19, har givet et indblik i kræftcellen vækstdvale 20 . Hver af disse modeller har deres egne begrænsninger og er af sig selv primært nyttig til at generere hypoteser vedrørende molekylær signalering og interaktioner, der styrer hviletilstand, der skal testes i mere biologisk relevante modeller.

Med det overordnede mål at definere de molekylære mekanismer i vækstdvale, interaktionerne med mikromiljø, der resulterer i cyklus anholdelse, redifferentiation og terapeutisk modstand og mekanismer, der resulterer i tilbagefald i ER + celler, udviklede vi en in vitro model, der giver udvalgte relevante dele af stromale mikromiljø 7. Denne model, mens relativt sparsomme i sin komponenter, er tilstrækkeligt robust til at tillade efterforskere til at udlede specifikke molekylære mekanismer, der påvirker væsentlige funktioner vækstdvale. Disse eksperimenter generere hypoteser, der direkte kan testes in vivo. Modellen bygger på et par vigtige elementer, som vi vist sig at være relevant i dvale. De omfatter anvendelse af østrogen-afhængige brystcancerceller, dyrkning af celler ved en klonogen tæthed hvor deres interaktion primært med underlaget og opløselige komponenter i mediet, et fibronectin substrat og tilstedeværelsen af ​​basisk fibroblast vækstfaktor (FGF-2) i mediet.

Vi kendetegnet mekanismer, der styrer systemet in vitro, herunder induktion af standsning af cellecyklus ved FGF-2 21, medieret gennem TGFp 22, overlevelse signalering gennem PI3 kinase 7,8 og ERK 8 og morfogene differentiering til en epitelial fænotype, der afhang af RhoA inaktivering integrin45; 5β1 opregulering og ligering af stromal fibronectin for overlevelse 7,15 (Figur 1). De in vitro cellecyklus virkninger af FGF-2 på MCF-7-celler begynder ved koncentrationer mindst en log under 10 ng / ml 21,23. Rationalet var baseret på den tidsmæssige styring af FGF-2-ekspression regulerer mamma ductal morfogenese, cyklisk ekspansion og recession i en række af mammale systemer 24-27. Vi viste, at FGF-2 inducerer differentiering, herunder duktalt morfogenese i 3D kultur 28, og at FGF-2-ekspression er generelt tabt med malign transformation af humane tumorer 29. Ekspressionen af FGR1 forblev intakt i brystcarcinomer adspurgte 29 og MCF-7-celler fortsætter med at udtrykke alle 4 FGF-receptorer 30. I forbindelse med hvileperioden er FGF-2 eksporteres af og stærkt aflejret på knoglemarvsstroma 31,32 hvor det fungerer på bevarelsen af hæmatopoietiske stamceller 33. Vi demonstrated at FGF-2 inducerer en sovende tilstand i ER + brystkræft celler dyrket på fibronectin substrater, også rigeligt i marven, hvor det inducerer morfogen differentiering 7. I modellen, brystkræftceller er vækst hæmmes, inaktivere Rho A gennem RhoGap GRAF, redifferentiate en epitelial fænotype og re-express integriner α5β1 lost med ondartet progression. De binder fibronectin gennem integrin α5β1 og aktivere overlevelse signalere, at gøre dem resistente over for cytotoksisk terapi 7,8,15 (figur 1). Inhibering af Rho klasse GTPaser er blevet påvist tidligere at inducere en hvilende fænotype 34.

Her vil vi skitsere de specifikke procedurer, der vil tillade efterforskerne at etablere modellen og studere specifikke molekylære og cellulære mekanismer, der styrer hviletilstand af ER + brystkræft celler. I eksperimenterne præsenteret her for at illustrere anvendelsen af ​​modellenVi målrettet PI3K pathway (figur 1B) med en Akt inhibitor og en PI3K-hæmmer og alle medlemmer af Rho familie (figur 1B) med en pan-Rho-hæmmer og en Rho-kinase (ROCK) hæmmer.

Protocol

1. klongenicitetsassayet Forberede en enkelt celle suspensioner af østrogenafhængige brystkræft cellelinier MCF-7 og T47D-celler under anvendelse nedenstående trin Aspirer dyrkningsmedium (DMEM / 10% varmeinaktiveret føtalt kalveserum / glutamin og pen / strep) fra en 10 cm vævskulturskål, der er ikke mere end 50% konfluente med MCF-7 eller T-47D-celler. Skyl med PBS. Inkuber med trypsin 0,25% / 2,21 mM EDTA opløst i DMEM høj glucose ved 37 ° C i 1-4 min. Check celler med 1 minuts…

Representative Results

Eksperimenter blev udført for at rekapitulere assayet. Tidsforløbet for eksperimentet er vist i figur 2A. Cellerne inkuberes ved klonogene densitet på dag -1, tilsættes FGF-2 i frisk medium på dag 0, og celler dyrkes indtil dag 6, når de farves, og kolonier tælles. Eventuelle forstyrrelser af systemet administreres på dag 3 i 100 pi volumener på 10x endelige koncentrationer ønskes. Figur 2B viser den typiske udseende voksende og sovende kolonier. Voksende kolonier indeho…

Discussion

Vores model består af flere centrale elementer i vækstdvale i knoglemarven. Den består af estrogen sensitive celler, som er den type, forventes at forblive hvilende i marven i længere perioder 10 består det af fibronectin, et centralt strukturelt element af marv, FGF-2, en vækstfaktor rigeligt syntetiseret ved knoglemarvsstroma og stærkt deponeret i den ekstracellulære matrix af knoglemarven 31,32 og inkubation af celler ved klonogen tæthed, hvor deres interaktion primært med underlaget. …

Divulgations

The authors have nothing to disclose.

Acknowledgements

Forfatterne har ikke noget at afsløre.

Materials

MCF-7 cells ATCC HTB-22
T47D cells  ATCC HTB-123
BD BioCoat Fibronectin 24 Well Clear Flat Bottom TC-Treated Multiwell Plate Corning 354411
BD BioCoat Fibronectin 60 mm Culture Dishes Corning 354403
BD BioCoat Fibronectin 100 mm Culture Dishes Corning 354451
BD BioCoat 22x22mm #1 Glass Coverslip with a uniform application of human fibronectin Corning 354088
6 Well tissue culture plate CellTreat 229106
Dulbecco Modified Eagle Medium High Glucose 10X Powder Corning Life Sciences 50-013-PB
Heat Inactivated, Fetal Bovine Serum Serum Source International FB02-500HI
0.25% Trypsin/2.21 mM EDTA Corning 25-053-CI
Penicillin-Streptomycin Solution, 100X Corning 30-002-CI
L-Glutamine, 100x, Liquid Corning 25-005-CI
Recombinant Human FGF basic R&D Systems 234-FSE-025
Akt Inhibitor (1L6-Hydroxymethyl-chiro-inositol-2-(R)-2-O-methyl-3-O-octadecyl-sn-glycerocarbonate) CalBiochem 124005
LY294002  CalBiochem 19-142 Chenical PI3K inhibitor
C3 transferase  Cytoskeleton CTO3 Inhibits RhoA, RhoB, and RhoC, but not related GTPases such as Cdc42 or Rac1
Y-27632 dihydrochloride  Santa Cruz Biotechnology 129830-28-2
BODIPY FL-Phallacidin (green)  Molecular Probes B607 Fluorochrome for fibrillar actin staining
BODIPY FL-Rhodamine phalloidin (red)  Molecular Probes R415 Fluorochrome for fibrillar actin staining
Alexa Fluor 488 Donkey anti-Mouse IgG Antibody, ReadyProbes Reagent  Molecular Probes R37114
ProLong Gold Antifade Mountant with DAPI  Molecular Probes P-36931

References

  1. Braun, S., et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med. 342 (8), 525-533 (2000).
  2. Benoy, I. H., et al. Relative microvessel area of the primary tumour, and not lymph node status, predicts the presence of bone marrow micrometastases detected by reverse transcriptase polymerase chain reaction in patients with clinically non-metastatic breast cancer. Breast Cancer Res. 7 (2), R210-R219 (1186).
  3. Wapnir, I. L., Barnard, N., Wartenberg, D., Greco, R. S. The inverse relationship between microvessel counts and tumor volume in breast cancer. Breast J. 7 (3), 184-188 (2001).
  4. Wyckoff, J. B., et al. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 60 (9), 2504-2511 (2000).
  5. Phadke, P. A., et al. Kinetics of metastatic breast cancer cell trafficking in bone. Clin Cancer Res. 12 (5), 1431-1440 (2006).
  6. Braun, S., et al. Lack of an effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high risk breast cancer patients. J Clin Onc. 18 (1), 80-86 (2000).
  7. Korah, R., Boots, M., Wieder, R. Integrin α5β1 promotes survival of growth-arrested breast cancer cells: an in vitro paradigm for breast cancer dormancy in bone marrow. Cancer Res. 64 (13), 4514-4522 (2004).
  8. Najmi, S., Korah, R., Chandra, R., Abdellatif, M., Wieder, R. Flavopiridol blocks integrin-mediated survival in dormant breast cancer cells. Clin Cancer Res. 11 (5), 2038-2046 (2005).
  9. Braun, S., et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N England J Med. 353 (8), 793-802 (2005).
  10. Dent, R., et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 13 (15 Part 1), 4429-4434 (2007).
  11. Kim, R. S., et al. Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS One. 7 (4), e35569 (2012).
  12. Hanin, L. Seeing the invisible: how mathematical models uncover tumor dormancy, reconstruct the natural history of cancer, and assess the effects of treatment. Adv in Exp Med & Biol. 734, 261-282 (2013).
  13. Wilkie, K. P. A review of mathematical models of cancer-immune interactions in the context of tumor dormancy. Adv in Exp Med & Biol. 734, 201-234 (2013).
  14. Barkan, D., Green, J. E. An in vitro system to study tumor dormancy and the switch to metastatic growth. J Vis Exp. (54), e2914 (2011).
  15. Barrios, J., Wieder, R. Dual FGF-2 and intergrin α5β1 signaling mediate GRAF-induced RhoA inactivation in a model of breast cancer dormancy. Cancer Microenvironment. 2 (1), 33-47 (2009).
  16. Ganapathy, V., et al. Luminal breast cancer metastasis is dependent on estrogen signaling. Clin & Exp Metastasis. 29 (5), 493-509 (2012).
  17. Barkan, D., et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 68 (15), 6241-6250 (2008).
  18. Ghajar, C. M., et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biology. 15 (7), 807-817 (2013).
  19. Marshall, J. C., et al. Effect of inhibition of the lysophosphatidic acid receptor 1 on metastasis and metastatic dormancy in breast cancer. J Nat Cancer Inst. 104 (17), 1306-1319 (2012).
  20. Almog, N. Genes and regulatory pathways involved in persistence of dormant micro-tumors. Adv in Exp Med & Biol. 734, 3-17 (2013).
  21. Wang, H., et al. Basic FGF causes growth arrest in MCF-7 human breast cancer cells while inducing both mitogenic and inhibitory G1 events. Cancer Res. 57 (9), 1750-1757 (1997).
  22. Fenig, E., et al. Role of transforming growth factor beta in the growth inhibition of human breast cancer cells by basic fibroblast growth factor. Breast Cancer Res Treat. 70 (1), 27-37 (2001).
  23. Fenig, E., et al. Basic fibroblast growth factor confers growth inhibition and Mitogen-activated Protein Kinase activation in human breast cancer cells. Clinical Cancer Research. 3 (1), 135-142 (1997).
  24. Coleman-Krnacik, S., Rosen, J. M. Differential temporal and spatial gene expression of fibroblast growth factor family members during mouse mammary gland development. Molecular Endocrinology. 8 (2), 218-229 (1994).
  25. Plath, A., et al. Expression and localization of members of the fibroblast growth factor family in the bovine mammary gland. J Dairy Science. 81 (10), 2604-2613 (1998).
  26. Lavandero, S., Chappuzeau, A., Sapag-Hagar, M., Oka, T. In vivo and in vitro evidence of basic fibroblast growth factor action in mouse mammary gland development. FEBS letters. 439 (3), 351-356 (1998).
  27. Sinowatz, F., Schams, D., Plath, A., Kolle, S. Expression and localization of growth factors during mammary gland development. Adv in Exp Med & Biol. 480, 19-27 (2000).
  28. Korah, R., Sysounthone, V., Scheff, E., Wieder, R. Intracellular FGF-2 promotes differentiation in T47-D breast cancer cells. Biochem Biophys Res Comm. 277 (1), 255-260 (2000).
  29. Korah, R., Das, K., Lindy, M. E., Hameed, M., Wieder, R. Co-ordinate loss of FGF-2 and laminin 5 expression during neoplastic progression of mammary duct epithelium. Human Pathology. 38 (1), 154-160 (2007).
  30. Wieder, R., et al. Overexpression of basic fibroblast growth factor in MCF-7 human breast cancer cells: lack of correlation between inhibition of cell growth and MAP kinase activation. J. Cellular Physiology. 177, 411-425 (1998).
  31. Brunner, G., Gabrilove, J., Rifkin, D. B., Wilson, E. L. Phospholipase C release of basic fibroblast growth factor from human bone marrow cultures as a biologically active complex with a phosphatidylinositol-anchored heparan sulfate proteoglycan. J Cell Biol. 114 (6), 1275-1283 (1991).
  32. Wilson, E. L., Rifkin, D. B., Kelly, F., Hannocks, M. J., Gabrilove, J. L. Basic fibroblast growth factor stimulates myelopoiesis in long-term human bone marrow cultures. Blood. 77 (5), 954-960 (1991).
  33. Gupta, P., McCarthy, J. B., Verfaillie, C. M. Stromal fibroblast heparan sulfate is required for cytokine-mediated ex vivo maintenance of human long-term culture-initiating cells. Blood. 87 (8), 3229-3236 (1996).
  34. Chatterjee, M., van Golen, K. L. Farnesyl transferase inhibitor treatment of breast cancer cells leads to altered RhoA and RhoC GTPase activity and induces a dormant phenotype. Int J Cancer. 129 (1), 61-69 (2011).
  35. Korah, R., Sysounthone, V., Golowa, Y., Wieder, R. Basic fibroblast growth factor confers a more differentiated phenotype in MDA-MB-231 human breast cancer cells. Cancer Res. 60 (3), 733-740 (2000).
  36. Dontu, G., et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Dev. 17 (10), 1253-1270 (2003).
  37. Tivari, S., Lu, H., Dasgupta, T., Wieder, R. Reactivation of dormant estrogen-dependent breast cancer micrometastases by bone marrow stromal injury in an in vitro model of dormancy. Proceedings of the 105th Annual Meeting of the American Association for Cancer Research. , (2014).
check_url/fr/52672?article_type=t

Play Video

Citer Cet Article
Tivari, S., Korah, R., Lindy, M., Wieder, R. An In Vitro Dormancy Model of Estrogen-sensitive Breast Cancer in the Bone Marrow: A Tool for Molecular Mechanism Studies and Hypothesis Generation. J. Vis. Exp. (100), e52672, doi:10.3791/52672 (2015).

View Video