Summary

メラトニンに対する低酸素/再酸素化誘発性の破壊の保護効果を研究するために、ヒト初代栄養膜細胞培養モデル

Published: July 30, 2016
doi:

Summary

This manuscript presents a unique in vitro model of immunopurified human villous cytotrophoblast cells cultured under hypoxia/reoxygenation. This model is suitable to study the protective effects of promising treatments, such as melatonin, on pregnancy complications associated with increased oxidative stress and altered placental function.

Abstract

This protocol describes how villous cytotrophoblast cells are isolated from placentas at term by successive enzymatic digestions, followed by density centrifugation, media gradient isolation and immunomagnetic purification. As observed in vivo, mononucleated villous cytotrophoblast cells in primary culture differentiate into multinucleated syncytiotrophoblast cells after 72 hr. Compared to normoxia (8% O2), villous cytotrophoblast cells that undergo hypoxia/reoxygenation (0.5% / 8% O2) undergo increased oxidative stress and intrinsic apoptosis, similar to that observed in vivo in pregnancy complications such as preeclampsia, preterm birth, and intrauterine growth restriction. In this context, primary villous trophoblasts cultured under hypoxia/reoxygenation conditions represent a unique experimental system to better understand the mechanisms and signalling pathways that are altered in human placenta and facilitate the search for effective drugs that protect against certain pregnancy disorders. Human villous trophoblasts produce melatonin and express its synthesizing enzymes and receptors. Melatonin has been suggested as a treatment for preeclampsia and intrauterine growth restriction because of its protective antioxidant effects. In the primary villous cytotrophoblast cell model described in this paper, melatonin has no effect on trophoblast cells in normoxic state but restores the redox balance of syncytiotrophoblast cells disrupted by hypoxia/reoxygenation. Thus, human villous trophoblast cells in primary culture are an excellent approach to study the mechanisms behind the protective effects of melatonin on placental function during hypoxia/reoxygenation.

Introduction

ヒト妊娠全体にわたって、単核幹細胞である胎盤栄養膜細胞は、急速に増殖し絨毛またはextravillous細胞栄養芽層細胞のいずれかに分化します。 Extravillous細胞栄養芽層が侵入し、子宮壁のらせん動脈を改造します。絨毛細胞栄養層は、他の一方で、多核合胞体(シンシチウム)1を形成するために、増殖し分化し、ヒューズを続けます。絨毛栄養膜の恒常性の維持は、胎児の幸福と健康な妊娠のために不可欠です。実際には、絨毛栄養膜は、酸素と栄養素の母体胎児の交換を可能にし、妊娠に不可欠なホルモンを産生します。また、合胞体栄養細胞は、母体の血液循環と直接接触している唯一の細胞型であり、本質的な物理的および免疫学的障壁を提供します。したがって、合胞体栄養細胞は恒常性維持のため、アポトーシスおよび交換を受けなければならないとAVOしますID胎盤病理2-5。

Kliman によって開発された技術。1986年の6個のヒト胎盤からの一次絨毛細胞栄養層を分離するためには、絨毛栄養膜分化に関与する分子メカニズムの研究を可能にすることによって、胎盤の研究に革命をもたらしました。密度遠心分離メディア(ポリビニルピロリドン、またはパーコールによってコーティングされたコロイダルシリカ粒子)で分離に続いてトリプシンおよびDNアーゼによる逐次酵素消化に基づいて、この古典的な技術は、現在、絨毛栄養膜細胞を単離するためのゴールドスタンダードとして認識されています。技術は、磁気免疫精製、これらの細胞の表面上の特異的抗原の示差発現に基づいて、非栄養膜細胞から絨毛細胞栄養芽層を分離する手順によって最適化することができます。私たちは、原因絨毛細胞membran上のその発現の欠如にヒト白血球抗原ABC(HLA-ABC)を選びました電子7,8。

胎盤は、妊娠中の酸素レベルの劇的な変化を受ける器官です。妊娠初期では、酸素の比は、第二及び第三のトリメスターに生理学的に非常に低い(2%O 2)が、酸素の穏やかなレベルに増加する(8%O 2)です。 Tuuli 9は、胎盤絨毛内部の栄養膜環境のin vitroでの再生が酸素化レベルでの挑戦とばらつきがあっても表現型の変化につながる可能性があることを説明しました。したがって、妊娠8,9の第三期中の胎盤絨毛に見られる酸素分圧を模倣するために正常酸素として8%の酸素を採用することが示唆されます。 Chenら 10は、広く栄養膜細胞培養における酸素分圧に関連するいくつかの変数を検討し、細胞周囲環境の酸素レベルを決定することの重要性を実証しました。絨毛中の酸素の濃度が増加する傾向にあります脈管形成に起因します。常に胎盤絨毛増加の血流および過酸化水素(豊富な反応性酸素種)のレベルは、脈管11,12を制御する重要な信号です。妊娠合併症、脈管形成の欠如は、低酸素状態を生成し、そしてより重要なことには、酸素の間欠的な変形は、(低酸素/再酸素化と呼ばれます)。これらの条件は、胎盤と胎児の生存率13,14を損なう酸化ストレスの異常な増加につながります。次のように栄養膜細胞が低酸素/再酸素化のエピソードの間に生体内で受ける改変は、in vitroで模倣することができる。彼らは合胞体栄養細胞に分化するまで、絨毛細胞栄養層は、酸素正常状態(8%O 2)下に維持されています。次いで、それらを酸素正常状態(再酸素化)の追加の18時間、続いて4時間、低酸素条件(0.5%O 2)に供されます。この低酸素/再酸素化のアプローチを使用して、元のトロホブラスト特定の妊娠合併症で観察されているように、調節解除酸化還元状態と内因性アポトーシス8のレベルの増加をhibit。したがって、これは胎盤性低酸素症/再酸素化に関連した妊娠合併症に対処するために新たな予防・治療法を評価するインビトロモデル有用です。

胎盤細胞は、例えば、酸化ストレスおよび胎盤機能不全15を回避する能力など、いくつかの重要な機能を有し、メラトニンを生成します。ここで、我々は、分子細胞および機能レベル8で胎盤栄養膜細胞におけるメラトニンの保護効果を実証するために使用される実験的なアプローチとセルモデルを提示します。

Protocol

胎盤は、インフォ患者の同意と倫理委員会(CHUMサンリュック病院とINRS-研究所アルマン-フラピエの承認を得て、直ちにCHUMサンリュック病院、モントリオール、QC、カナダでの合併症のない妊娠からの自発的な膣分娩後に得ましたラバル、QC、カナダ)。 絨毛細胞栄養芽層細胞の1単離および精製ソリューションとメディア 4℃で1%の体積/体積の抗生物質(10,000単位/ m…

Representative Results

経膣分娩で得られた正常期間胎盤から絨毛栄養膜細胞の単離と免疫精製は、1×10 8の生細胞が得られました。胎盤は、350グラムの重量を量った円盤状の形状と透明膜で4センチ、直径19センチ、でした。いいえ子葉奇形は検出されませんでした。臍帯は傍局在と56センチメートルの長さを有していました。純度は、ビメンチンおよびサイトケラチン7マーカーを用?…

Discussion

哺乳類では、胎児の発育が十分な胎盤機能に直接依存しています。健康障害の発生起源は、その後の人生で明らかに病気の原因は早期開発に胎盤が胎児プログラミング30-32で機構的な役割を持っていることをさかのぼることができ仮説に基づいています。胎盤は胎児の成長と発展の重要なメディエーターである:それは、栄養移動を規制する有害な暴露から保護し、主要な内分泌機能…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) (no. 262011-2009) to CV and March of Dimes Social and Behavioral Sciences Research grant (#12-FY12-179) to CV and JTS; by studentships to LSF from the Ministère de l’éducation, de l’Enseignement supérieurs et de la recherche (MEESR)-Fonds de recherche du Québec (FRQ)-Nature et technologies (NT) and the Fondation Universitaire Armand-Frappier INRS, to HC from the Réseau Québécois en Reproduction-NSERC-CREATE, to AAHT from the Canadian Institutes of Health Research (CIHR) and FRQ-Santé, and to JBP from NSERC; by a fellowship to EMAS from the Conselho Nacional de Desenvolvimento Cientìfico e Tecnològico (CNPq) and the Programme de bourses d’excellence pour étudiants étrangers MEESR-FRQNT.

Materials

Curved Metzenbaum Scissors Shandon 9212 surgical equipment (cell isolation) (2 units)
Splinter Forceps Fine 41/2in Fisherbrand 13-812-42 surgical equipment (cell isolation) (2 units)
Scissors 4.5 Str Dissection Fisherbrand 08-940 surgical equipment (cell isolation) (2 units)
Gauze Sponge 10cm X 10cm Cardinal Health 361020733
Oblong Glass Baking Dish Pyrex 1105397 Glassware (2.8L)
Funnel Buchner  Coorstek Inc 10-356E Glassware (114MM DIAMeter)
Watch Glass  pyrex 9985100EMD Glassware
Formalin solution, neutral buffered, 10% Sigma-Aldrich HT501128-4L histological tissue fixative solution
Trypsinizing Flasks Wheaton 355395 Glassware (1 unit)
Disposable Culture Tubes Kimble 73750-13100 Glassware
Borosilicate Glass Pasteur Pipet (22.8 Cm)  Fisherbrand K63B1367820C Glassware
250 Ml Glass Beakers  Fisherbrand KFS14005250 Glassware
Glass Media Bottles With Cap Fisherbrand KFS14395250 Glassware (8 units)
50 Ml Corex Tube  Corning 8422-A (1 unit)
15 Ml Polystyrene Centrifuge Tube Corning 430791
50 Ml Polystyrene Centrifuge Tube Corning 430829
10ml Serological Pipet Corning 11415038
Cell Strainer 100μm Nylon Corning 431752
Absorbant Liner Scienceware 1199918
500 Ml Bottles Top Filter  Corning Pore: 0,22 µm / medium and HBSS preparation
2 Ml Criogenic Vials Corning 430488
Freezing Container, Nalgene Mr. Frosty Sigma-Aldrich C1562-1EA
Peristaltic Pump Pharmacia Fine Chemicals P3 model
Shaking Water Bath Fisher Model 127
Vacuum Pump ABM 4EKFS6CX-4
Sodium Chloride Fisherbrand EC231-598-3 Saline solution 0.9%
Hank’s Buffered Salt Solution (Hbss) Sigma-Aldrich H2387 Quantity: 9.25 (one vial) for 1L of digestion solution
Hydroxypiperazineethansulphonic Acid (Hepes) Life Technologies 15630-080 25mL (1M) for 1L of digestion solution
Trypsin Type I Sigma-Aldrich T8003 9,888U
Deoxyribonuclease Type Iv Roche 10-104-159-001 402,000U
Calcium Chloride Sigma-Aldrich C4901 100mM
Magnesium Sulfate Baker 2500-01 800mM
Dulbecco’s Modified Eagle Medium High Glucose (Dmem) Life Technologies 10564-045
Penicillin/Streptomycin Sulphate Hyclone SV30010
Fetal Bovine Serum Corning 35-010-CV
Percoll Sigma-Aldrich P1644  Density centrifugation media gradient. Volume: 36mL
Isopropanol Acros 42383-0010 50mL
Dimethyl Sulfoxide Sigma-Aldrich 472301
Automacs Magnetic Separator  Miltenyi Biotec Model 003
Automacs Columns  Miltenyi Biotec 130-021-101
Automacs Running Buffer  Miltenyi Biotec 130-091-221 http://www.miltenyibiotec.com/~/media/Images/Products/Import/0001100/IM0001131.ashx?force=1
Automacs Rinsing Solution  Miltenyi Biotec 130-091-222 http://www.miltenyibiotec.com/en/products-and-services/macs-cell-separation/cell-separation-buffers/automacs-rinsing-solution.aspx
Anti-Human Hla Abc Purified Clone W6/32 Affymetrix eBioscience 14-9983-82 anti-mouse antibody
Anti Mouse Igg Microbeads Miltenyi Biotec 130048401
Multiple Well Plate -  6 Well With Lid Corning 3335 Cell Bind surface
Multiple Well Plate -  24 Well With Lid Corning 3337 Cell Bind surface
Multiple Well Plate -  96 Well With Lid Corning 3300 Cell Bind surface
Modular Incubator Chamber  Billups-Rothenberg MIC-101 A set of two is necessary for simultaneous to generate normoxia and hypoxia/reoxygenation conditions
Single Flow Meter Billups-Rothenberg SFM3001
50 Mm In-Line Filter  Whatman 6721-5010 PTFE, pore: 1.0 µm
Gas Regulator Pro Star PRS301233 A set of two is necessary for simultaneous to generate normoxia and hypoxia/reoxygenation conditions
Gas Hose Class Vi Clear 5/16  Parker 100-05070102 3 pieces with ~ 0.5 m
17 Mm Adjustable Gas Hose Clamp Tiewraps THCSS-16
Normoxia Gas Cylinder  Praxair NI CDOXR1U-K Size K (3rd trimester‘s composition: 5% CO2, 8% O2, Bal. N2)
Normoxia Gas Cylinder  Praxair NI CDOXR1U-K Size K (3rd trimester‘s composition: 5% CO2, 0.5% O2, Bal. N2)
Oxygen Microelectrode Mi-730 Microelectrodes INC 84477
Oxygen Adapter Microelectrodes INC 3572
ROS Detection Reagent: CM-H2DCFDA  Invitrogen C-400
β-hCG ELISA kit  DRG internatinal EIA-4115
Anti-Vimentin ourified antibody eBioscience 14-9897 Host: mouse
Anti-Cytokeratin 7 (FITC) antibody  Abcam ab119697 Host: mouse
Alexa Fluor 488 Goat Anti-mousse IgG H&L antibody Life Technologies A-11029

References

  1. Vaillancourt, C., Lanoix, D., Le Bellego, F., Daoud, G., Lafond, J. Involvement of MAPK signalling in human villous trophoblast differentiation. Mini Rev Med Chem. 9 (8), 962-973 (2009).
  2. Gauster, M., Moser, G., Orendi, K., Huppertz, B. Factors involved in regulating trophoblast fusion: potential role in the development of preeclampsia. Placenta. 30, 49-54 (2009).
  3. Huppertz, B., Kadyrov, M., Kingdom, J. C. Apoptosis and its role in the trophoblast. Am J Obstet Gynecol. 195 (1), 29-39 (2006).
  4. Lanoix, D., Lacasse, A. A., Reiter, R. J., Vaillancourt, C. Melatonin: the smart killer: the human trophoblast as a model. Mol Cell Endocrinol. 348 (1), 1-11 (2012).
  5. Huppertz, B., Frank, H. G., Reister, F., Kingdom, J., Korr, H., Kaufmann, P. Apoptosis cascade progresses during turnover of human trophoblast: analysis of villous cytotrophoblast and syncytial fragments in vitro. Lab Invest. 79 (12), 1687-1702 (1999).
  6. Kliman, H. J., Nestler, J. E., Sermasi, E., Sanger, J. M., Strauss, J. F., 3rd, Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology. 118 (4), 1567-1582 (1986).
  7. Lanoix, D., Beghdadi, H., Lafond, J., Vaillancourt, C. Human placental trophoblasts synthesize melatonin and express its receptors. J Pineal Res. 45 (1), 50-60 (2008).
  8. Lanoix, D., Lacasse, A. A., Reiter, R. J., Vaillancourt, C. Melatonin: The watchdog of villous trophoblast homeostasis against hypoxia/reoxygenation-induced oxidative stress and apoptosis. Mol Cell Endocrinol. 381 (1-2), 35-45 (2013).
  9. Tuuli, M. G., Longtine, M. S., Nelson, D. M. Review: Oxygen and trophoblast biology–a source of controversy. Placenta. 32, 109-118 (2011).
  10. Chen, B., Longtine, M. S., Nelson, D. M. Pericellular oxygen concentration of cultured primary human trophoblasts. Placenta. 34 (2), 106-109 (2013).
  11. Roberts, J. M., Hubel, C. A. Is oxidative stress the link in the two-stage model of pre-eclampsia. Lancet. 354 (9181), 788-789 (1999).
  12. Burton, G. J., Jauniaux, E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 25 (3), 287-299 (2011).
  13. Ji, L., Brkic, J., Liu, M., Fu, G., Peng, C., Wang, Y. L. Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med. 34 (5), 981-1023 (2013).
  14. Redman, C. W., Sargent, I. L. Placental stress and pre-eclampsia: a revised view. Placenta. 30, 38-42 (2009).
  15. Sagrillo-Fagundes, L., Soliman, A., Vaillancourt, C. Maternal and placental melatonin: actions and implication for successful pregnancies. Minerva Ginecol. 66 (3), 251-266 (2014).
  16. Blaschitz, A., Weiss, U., Dohr, G., Desoye, G. Antibody reaction patterns in first trimester placenta: implications for trophoblast isolation and purity screening. Placenta. 21 (7), 733-741 (2000).
  17. Potgens, A. J., Gaus, G., Frank, H. G., Kaufmann, P. Characterization of trophoblast cell isolations by a modified flow cytometry assay. Placenta. 22 (2-3), 251-255 (2001).
  18. Petroff, M. G., Phillips, T. A., Ka, H., Pace, J. L., Hunt, J. S. Isolation and culture of term human trophoblast cells. Methods Mol Med. 121, 203-217 (2006).
  19. Maldonado-Estrada, J., Menu, E., Roques, P., Barre-Sinoussi, F., Chaouat, G. Evaluation of Cytokeratin 7 as an accurate intracellular marker with which to assess the purity of human placental villous trophoblast cells by flow cytometry. J Immunol Methods. 286 (1-2), 21-34 (2004).
  20. Le Bellego, F., Vaillancourt, C., Lafond, J. Isolation and culture of term human cytotrophoblast cells and in vitro methods for studying human cytotrophoblast cells’ calcium uptake. Methods Mol Biol. 550, 73-87 (2009).
  21. Mounier, C., Barbeau, B., Vaillancourt, C., Lafond, J. Endocrinology and cell signaling in human villous trophoblast. Methods Mol Biol. 550, 89-102 (2009).
  22. Chen, B., et al. Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts. Am J Physiol Endocrinol Metab. 302 (9), 1142-1152 (2012).
  23. Reti, N. G., et al. Effect of high oxygen on placental function in short-term explant cultures. Cell Tissue Res. 328 (3), 607-616 (2007).
  24. Pidoux, G., et al. Biochemical characterization and modulation of LH/CG-receptor during human trophoblast differentiation. J Cell Physiol. 212 (1), 26-35 (2007).
  25. Pidoux, G., et al. ZO-1 is involved in trophoblastic cell differentiation in human placenta. Am J Physiol Cell Physiol. 298 (6), 1517-1526 (2010).
  26. Williams, J. L., Fyfe, G. K., Sibley, C. P., Baker, P. N., Greenwood, S. L. K+ channel inhibition modulates the biochemical and morphological differentiation of human placental cytotrophoblast cells in vitro. Am J Physiol Regul Integr Comp Physiol. 295 (4), 1204-1213 (2008).
  27. Schild, R. L., Schaiff, W. T., Carlson, M. G., Cronbach, E. J., Nelson, D. M., Sadovsky, Y. The activity of PPAR gamma in primary human trophoblasts is enhanced by oxidized lipids. J Clin Endocrinol Metab. 87 (3), 1105-1110 (2002).
  28. Menendez-Pelaez, A., Reiter, R. J. Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res. 15 (2), 59-69 (1993).
  29. Perrone, S., Stazzoni, G., Tataranno, M. L., Buonocore, G. New pharmacologic and therapeutic approaches for hypoxic-ischemic encephalopathy in the newborn. J Matern Fetal Neonatal Med. 25, 83-88 (2012).
  30. Nelissen, E. C., van Montfoort, A. P., Dumoulin, J. C., Evers, J. L. Epigenetics and the placenta. Hum Reprod Update. 17 (3), 397-417 (2011).
  31. Barker, D. J. Intrauterine programming of adult disease. Mol Med Today. 1 (9), 418-423 (1995).
  32. Barker, J. R., Thomas, C. F., Behan, M. Serotonergic projections from the caudal raphe nuclei to the hypoglossal nucleus in male and female rats. Respir Physiol Neurobiol. 165 (2-3), 175-184 (2009).
  33. Yui, J., et al. Functional, long-term cultures of human term trophoblasts purified by column-elimination of CD9 expressing cells. Placenta. 15 (3), 231-246 (1994).
  34. Kilani, R. T., Chang, L. J., Garcia-Lloret, M. I., Hemmings, D., Winkler-Lowen, B., Guilbert, L. J. Placental trophoblasts resist infection by multiple human immunodeficiency virus (HIV) type 1 variants even with cytomegalovirus coinfection but support HIV replication after provirus transfection. J Virol. 71 (9), 6359-6372 (1997).
  35. Knofler, M., Stenzel, M., Husslein, P. Shedding of tumour necrosis factor receptors from purified villous term trophoblasts and cytotrophoblastic BeWo cells. Hum Reprod. 13 (8), 2308-2316 (1998).
  36. Douglas, G. C., King, B. F. Isolation of pure villous cytotrophoblast from term human placenta using immunomagnetic microspheres. J Immunol Methods. 119 (2), 259-268 (1989).
  37. Li, L., Schust, D. J. Isolation, purification and in vitro differentiation of cytotrophoblast cells from human term placenta. Reprod Biol Endocrinol. 13, 71 (2015).
  38. Stenqvist, A. C., et al. An efficient optimized method for isolation of villous trophoblast cells from human early pregnancy placenta suitable for functional and molecular studies. Am J Reprod Immunol. 60 (1), 33-42 (2008).
  39. Potgens, A. J., Kataoka, H., Ferstl, S., Frank, H. G., Kaufmann, P. A positive immunoselection method to isolate villous cytotrophoblast cells from first trimester and term placenta to high purity. Placenta. 24 (4), 412-423 (2003).
  40. Lanoix, D., Vaillancourt, C. Cell culture media formulation and supplementation affect villous trophoblast HCG release. Placenta. 31 (6), 558-559 (2010).
  41. Vaillancourt, C., Lafond, J. Human embryogenesis: overview. Methods Mol Biol. 550, 3-7 (2009).
  42. Armant, D. R., et al. Human trophoblast survival at low oxygen concentrations requires metalloproteinase-mediated shedding of heparin-binding EGF-like growth factor. Development. 133 (4), 751-759 (2006).
  43. McCaig, D., Lyall, F. Hypoxia upregulates GCM1 in human placenta explants. Hypertens Pregnancy. 28 (4), 457-472 (2009).
  44. Burton, G. J., et al. Optimising sample collection for placental research. Placenta. 35 (1), 9-22 (2014).
  45. Lanoix, D., et al. Quantitative PCR pitfalls: the case of the human placenta. Mol Biotechnol. 52 (3), 234-243 (2012).
  46. Bilban, M., et al. Trophoblast invasion: assessment of cellular models using gene expression signatures. Placenta. 31 (11), 989-996 (2010).
  47. Novakovic, B., et al. Wide-ranging DNA methylation differences of primary trophoblast cell populations and derived cell lines: implications and opportunities for understanding trophoblast function. Mol Hum Reprod. 17 (6), 344-353 (2011).
  48. Burleigh, D. W., et al. Microarray analysis of BeWo and JEG3 trophoblast cell lines: identification of differentially expressed transcripts. Placenta. 28 (5-6), 383-389 (2007).
  49. Hung, T. H., Skepper, J. N., Charnock-Jones, D. S., Burton, G. J. Hypoxia-reoxygenation: a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ Res. 90 (12), 1274-1281 (2002).
  50. Heazell, A. E., Moll, S. J., Jones, C. J., Baker, P. N., Crocker, I. P. Formation of syncytial knots is increased by hyperoxia, hypoxia and reactive oxygen species. Placenta. 28, 33-40 (2007).
  51. Heazell, A. E., Lacey, H. A., Jones, C. J., Huppertz, B., Baker, P. N., Crocker, I. P. Effects of oxygen on cell turnover and expression of regulators of apoptosis in human placental trophoblast. Placenta. 29 (2), 175-186 (2008).
  52. Chen, B., Longtine, M. S., Nelson, D. M. Hypoxia induces autophagy in primary human trophoblasts. Endocrinology. 153 (10), 4946-4954 (2012).
  53. Lanoix, D., Guerin, P., Vaillancourt, C. Placental melatonin production and melatonin receptor expression are altered in preeclampsia: new insights into the role of this hormone in pregnancy. J Pineal Res. 53 (4), 417-425 (2012).
  54. Galano, A., Tan, D. X., Reiter, R. J. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 51 (1), 1-16 (2011).
  55. Alers, N. O., Jenkin, G., Miller, S. L., Wallace, E. M. Antenatal melatonin as an antioxidant in human pregnancies complicated by fetal growth restriction–a phase I pilot clinical trial: study protocol. BMJ Open. 3 (12), 004141 (2013).
  56. Hobson, S. R., Lim, R., Gardiner, E. E., Alers, N. O., Wallace, E. M. Phase I pilot clinical trial of antenatal maternally administered melatonin to decrease the level of oxidative stress in human pregnancies affected by pre-eclampsia (PAMPR): study protocol. BMJ Open. 3 (9), 003788 (2013).
check_url/fr/54228?article_type=t

Play Video

Citer Cet Article
Sagrillo-Fagundes, L., Clabault, H., Laurent, L., Hudon-Thibeault, A., Salustiano, E. M. A., Fortier, M., Bienvenue-Pariseault, J., Wong Yen, P., Sanderson, J. T., Vaillancourt, C. Human Primary Trophoblast Cell Culture Model to Study the Protective Effects of Melatonin Against Hypoxia/reoxygenation-induced Disruption. J. Vis. Exp. (113), e54228, doi:10.3791/54228 (2016).

View Video