Summary

非人类灵长类动物脑组织的制备预嵌入免疫组化和电子显微镜

Published: April 03, 2017
doi:

Summary

在这里,我们提供了一种简单,低成本,和时间高效的协议进行化学固定与丙烯醛固定液灵长类脑组织,从而允许长期保存,其与预嵌入-免疫组化透射电子显微镜兼容。

Abstract

尽管在光学显微镜级别的所有技术的进步,电子显微镜仍然是神经科学的唯一工具来检查和鉴定神经元,如突触联系的超微结构和形态的细节。脑组织的保存好电子显微镜可以通过严格的冷冻固定的方法来获得,但这些技术是相当昂贵和限制使用免疫标记,这关键是要了解确定的神经系统的连通性。冷冻替代方法已经被开发,使冷冻固定的与免疫标记的组合。然而,这些方式方法的重现性通常依赖于昂贵的冷冻设备。此外,获得可靠的结果,这种技术是非常耗时和技能挑战。因此,传统的化学固定脑,特别是丙烯醛的固定剂,仍是电子结合了时间效率和低成本的方法显微镜用免疫组化。在这里,我们提供使用化学丙烯醛固定,导致灵长类动物脑组织的保存,并与嵌入前免疫电镜和透射电镜检查相适应的可靠的实验方案。

Introduction

光镜,包括共焦和双光子显微镜,已被证明是用于体内神经元过程研究,除其他事项外1,2的有效工具。虽然在光镜(LM)级的典型的空间分辨率约为200nm时,使用不同的光源,如极紫外和软X射线显微术最近的技术进步,已经此分辨率显着增加至近10纳米的空间分辨率3 ,4,5。在其他成像技术的进步包括结合组织学磁共振成像和用于测量体内髓鞘,只在6电子显微镜(EM)的水平,7是传统上可测量的参数的厚度提供一种新颖的方法。 AlthouGH这些进步在LM水平用于研究活的过程,结构的详细视图和表征,如突触联系提供一个极好的工具,只能与EM,它提供的分辨率,可以达到0.5nm的来实现。然而,观察在EM级要求的标本是死的,并改变在某些方面,化学固定剂和脱水过程中,为了保持细胞结构。因此,在高分辨率检验的生物样品可以是具有挑战性由于从电子束辐射损伤,对比度低,膜的结构偏差,或可能出现以下脱水和环氧树脂包埋8,9,10的伪像甚至存在。

在用于结构分析它们的天然形式保存标本可以通过使用“EM冷冻玻化部分的”或CEMOVIS,一个切片的方法来实现该涉及快速冷冻和嵌入在玻璃体冰样品和在低温下11,12检查EM下的部分。这一程序可以检测样本的检验,而他们仍然坚实,充分水化,从而消除由于脱水处理的工件13。然而,该方法涉及为低温超薄切片额外的设备,以及在标准EM附加的设备,以允许该观察在非常低的温度,这产生显著额外的成本。此外,CEMOVIS方法排除了使用免疫标记技术中,由于抗体通常具有在RT下温育的。可替代地,有可能通过使用冷冻替代方法中,在此期间,而在低温保护化学品和浸入第是低温固定试样缓慢解冻与免疫组织化学程序超微结构分析结合恩嵌入专用树脂,如Lowicryls。后嵌入免疫标记然后可以在这样的材料12进行。然而,冷冻取代和冷冻固定技术是耗时的。它们需要额外的设备的安装,但是仍然需要样品被暴露于有机溶剂和化学固定剂可改变细胞结构,尽管使用一个低温14,15。因此,尽管两者在LM和EM水平,脑组织的化学固定,特别是丙烯醛的所有技术的进步,仍然是一个低成本的和时间有效的方法来免疫组织化学EM 16结合起来。

在过去的几十年,进行了许多尝试,发现提供最佳的组织保存醛的混合物。 20世纪60年代之前,这给了可接受的结果为EM的唯一化学固定是四氧化锇。然而,四氧化锇是剧毒和昂贵的,通过血管系统以固定的器官如脑排除其使用。丙烯醛在50年代后期推出了作为适用于蜂窝结构17的EM观察动物组织保存的可靠方法。它更深入地穿透组织并且比通过浸渍用于固定时,并且允许细胞质成分的良好的保存,与组织17的最小的收缩其它醛反应更迅速。在新鲜组织使用时,通过使活分子化合物,如酶和其它蛋白质18的更精确的定位,这种特征给丙烯醛固定比其它醛明显的优势。事实上,它已经经过多年用于可视化在许多物种,包括两栖类和啮齿类动物的EM水平固定的一种简单,高效,低成本的方法验证,因为它有效地stabiliZES肽和蛋白质,保留抗原性,并与另一种醛组合使用固定剂16,18,19,20,21时提供了相对完整超微结构。用于在啮齿动物丙烯醛固定协议已自然后被标准化并且广泛地使用,特别是由皮克尔组,以实现双重免疫标记为EM 16,22。几组在非人类灵长类动物的大脑组织23已经使用丙烯醛固定。然而,据我们所知,有效率地描述了在非人类的灵长类丙烯醛是与EM免疫标记24兼容的化学固定只有一个出版协议。

在本文中,我们提供了一种简单而可靠的方法以有效地化学修复非哼声一个灵长类动物大脑中的丙烯醛,允许预先埋设 – 免疫标记和传输EM检查沿着一个潜在的长期保存。

Protocol

伦理声明:所有涉及动物的协议是由科米特去保护DES ANIMAUX DE L'拉瓦尔大学批准,并按照加拿大动物保护协会的指南实验动物的护理和使用(编2)被做了。这里所述的方案对于大约800克成年动物优化。固定的量应根据动物的大小进行调整。 1.一种用于Transcardiac灌注溶液的制备根据以下步骤制备1升50mM的磷酸钠的磷酸盐缓冲盐水(PBS)溶液。灌注之前制备至多24小时?…

Representative Results

在本节中,我们提出获得,继观察,在发送EM水平,进行免疫染色的灵长类动物的脑组织化学固定用3%丙烯醛的混合物和4%PFA的代表性结果。我们所取得的超微结构的良好保存,由相对完整髓鞘和双膜( 图2A)的可视整齐所示。突触联系,从微环境的神经元元件,均可以很容易被识别( 图2B)。标记的二氨基联苯胺(DAB)免疫沉淀物的神经元元?…

Discussion

在本文中,我们提出了非人类的灵长类动物和适于EM样品检查嵌入预免疫的transcardiac灌注一个可靠的协议。虽然典型的冷冻电镜,如CEMOVIS,提供脑组织超微结构的保存较好,这也限制了使用免疫组织化学12。其它技术,包括冷冻替代和Tokuyaso技术中,允许后嵌入免疫组织化学,但是这些技术是昂贵的,由于该过程期间所需的附加设备,并且可以是费时和技能挑战<…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项研究是由加拿大自然科学和工程研究理事会(NSERC,401848-2011到MP)的支持。 MP从全宗德RECHERCHE魁北克-桑特(FRQ-S)获得了职业生涯奖。 LE是从FRQ-S(FRQ-S 14D 29441)的博士研究金的接收者。我们感谢玛丽 – Josée沃尔曼技术援助。

Materials

Dibasic anhydrous sodium phosphate (Na2HPO4) Fisher scientific S374-500
Monobasic monohydrate sodium phosphate (NaH2PO4.H2O) EM Science SX0710-1
Sodium chloride (NaCl) Fisher scientific S271-3
Hydroxymethyl aminomethane (THAM) Fisher scientific T370-500
HCl  EMD HX0603-3 1N dilution. Product is corrosive. Use with appropriate potection.
NaOH EMD SX0590-1 5N dilution. Product is corrosive. Use with appropriate protection.
Paraformaldehyde Sigma P6148 4% dilution. Product is highly volatile in its powder form and highly toxic. Use with caution under a venting hood with appropriate protection.
Acrolein (90%) sigma 110221 3% dilution. Product is highly toxic. Use under a venting hood with appropriate protection.
Autopsy venting table Mopec CE400
Electronic perfusion pump cole parmer masterflex L/S 7523-90
Needle (perfusion) terumo  NN-1838R 18G 1 1/2
Needle terumo  NN-2713R 21G 1/2
Ketamine 20 mg/kg
Xylazine 4 mg/kg
Acepromazine 0.5 mg/kg
Scalpel
Scalpel blades Feather           lance 201011           J9913 No.22 for surgery and    No. 11 for EM
Surgical scissors
Rongeurs
Vibratome Leica VT 1200S Calibrate blade before each use, when the device allows it
Vibratome razor blade Gillette GIN 642107
Glycerol Fisher scientific G33-4 30% dilution
Ethylene glycol Fisher scientific E178-4 30% dilution
Sodium borohydride (NaBH4) sigma S-9125
Normal horse serum Jackson immunoResearch Laboratories 008-000-121 2% dilution
Cold-fish gelatin Aurion 900.033 0.5% dilution. Original product is concentrated at 40%
Primary antibody, SERT Santa Cruz biotechnology SC-1458 1/500 dilution
Primary antibody, ChAT Chemicon (Millipore) AB144P 1/25 dilution
Primary antibody, TH ImmunoStar 22941 1/1000 dilution
Biotinylated secondary antibody, goat Vector laboratories BA-9500 1/1000 dilution
Biotinylated secondary antibody, mouse Vector laboratories BA-2000 1/1000 dilution
Vectastain elite ABC kit Vector laboratories PK6100 8.8 µL/mL of A and B each
3'3 diaminobenzidine (DAB) Sigma D5637 0,05% dilution. Product is highly volatile in its powder form and toxic. Do not throw waste in the sink.
Peroxide (H2O2) 30% Fisher scientific H-323 0,005% dilution
Osmium tetroxide (OsO4) Electron microscopic science 2% 19152           4% 19150              Original solution can be either 2% ou 4%. Keep attention to which one is used to calculate the final 1% dilution. Product is very sensitive to light. Osmium is highly toxic. Use only under a venting hood with appropriate protection.
Durcupan water-repellent epoxy resin sigma A: M epoxy resin (44611)                B: hardener 964 (44612)                C: accelerator 960 (DY 060)  (44613)               D: plasticizer (44614)  Polymerize 48h at 58 °C before throwing in waste.
Alumium cups Electron microscopic science 70048-01
Ethanol commercial alcohols 1019C Dilute in distilled water with appropriate concentration
Propylene oxide Electron microscopic science 20401 Organic solvent. Highly volatile and toxic. Use under a venting hood.
Non-coated medium glass slides brain research laboratories 3875-FR Grease surface with mineral oil
Plastic film (Aclar embedding film) Electron microscopic science 50425-25 Grease surface with mineral oil
Ultramicrotome Leica UC7 EM UC7
Diamond trimming tool (ultratrim) Diatome  UT 1081 Can use glass knife alternatively
Ultra 45° Diatome Diamond knife Diatome  MC13437 equipped with a boat
Xylenes Fisher scientific X5SK-4
150-mesh copper grids Electron microscopic science G150-cu
grid-box Electron microscopic science 71138 Can store up to 100 grids
Sodium citrate Anachemia 81983
Lead nitrate sigma L-6258 Make a stock solution of lead citrate made of 1.33 g of lead nitrate and 1.76g of sodium citrate diluted in 42 mL of pre-boiled and cooled distilled water to which 8 mL of 1N NaOH are added after the conversion from lead nitrate to lead citrate is complete. pH should be approximately 12. Store solution in a hermetic plastic bottle and protect from light.
Syringe terumo  SS-05L 5 mL
Syringe filter corning 431222 0.2 µm
Absorbing paper (bibulous paper) Electron microscopic science 70086-1
Parafilm Laboratory film PM-999
Mineral oil Sigma M5904

References

  1. Pozzi, P., Gandolfi, D., et al. High-throughput spatial light modulation two-photon microscopy for fast functional imaging. Neurophotonics. 2 (1), 015005 (2015).
  2. Zhou, Y., et al. A comparison study of detecting gold nanorods in living cells with confocal reflectance microscopy and two-photon fluorescence microscopy. J. Microsc. 237 (2), 200-207 (2010).
  3. Chao, W., Kim, J., Rekawa, S., Fischer, P., Anderson, E. H. Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy. Opt. Express. 17 (20), 17669-17677 (2009).
  4. Wachulak, P., Bartnik, A., Fiedorowicz, H. A 50 nm spatial resolution EUV imaging-resolution dependence on object thickness and illumination bandwidth. Opt Express. , (2011).
  5. Wachulak, P., et al. A compact "water window" microscope with 60 nm spatial resolution for applications in biology and nanotechnology. Microsc. Microanal. , 1-10 (2015).
  6. Stikov, N., et al. In vivo histology of the myelin g-ratio with magnetic resonance imaging. Neuroimage. 118, 397-405 (2015).
  7. Stikov, N., et al. Quantitative analysis of the myelin g-ratio from electron microscopy images of the macaque corpus callosum. Data Brief. 4, 368-373 (2015).
  8. Mollenhauer, H. H. Artifacts caused by dehydration and epoxy embedding in transmission electron microscopy. Microsc. Res. Tech. 26 (6), 496-512 (1993).
  9. Henderson, R. Realizing the potential of electron cryo-microscopy. Q. Rev. Biophys. 37 (1), 3-13 (2004).
  10. Sander, B., Golas, M. M. Visualization of bionanostructures using transmission electron microscopical techniques. Microsc. Res. Tech. 74 (7), 642-663 (2011).
  11. Ren, G., Rudenko, G., Ludtke, S. J., Deisenhofer, J., Chiu, W., Pownall, H. J. Model of human low-density lipoprotein and bound receptor based on cryoEM. Proc. Natl. Acad. Sci. U.S.A. 107 (3), 1059-1064 (2010).
  12. Webster, P., Schwarz, H., Griffiths, G. Preparation of cells and tissues for immuno EM. Methods Cell Biol. 88, 45-58 (2008).
  13. Kürner, J., Medalia, O., Linaroudis, A. A., Baumeister, W. New insights into the structural organization of eukaryotic and prokaryotic cytoskeletons using cryo-electron tomography. Exp. Cell Res. 301 (1), 38-42 (2004).
  14. Humbel, B. M. Freeze-substitution. Handbook of cryo-preparation methods for electron microscopy. 13, 319-341 (2009).
  15. Stierhof, Y., Humbel, B. M., van Donselaar, E., Schwarz, H. Cryo-fixation, freeze-substitution rehydration and Tokuyaso cryo-sectioning. Handbook of cryo-preparation methods for electron microscopy. 14, 344-365 (2009).
  16. Leranth, C., Pickel, M. V. Electron microscopic pre-embedding double-immunohistochemical methods. Neuroanatomical tract-tracing methods 2. , 129-172 (1989).
  17. Luft, J. H. The use of acrolein as a fixative for light and electron microscopy. Anat. Rec. 133, 305-305 (1959).
  18. Saito, T., Keino, H. Acrolein as a fixative for enzyme cytochemistry. J. Histochem. Cytochem. 24 (12), 1258-1269 (1976).
  19. King, J. C., Lechan, R. M., Kugel, G., Anthony, E. L. Acrolein: a fixative for immunocytochemical localization of peptides in the central nervous system. J. Histochem. Cytochem. 31 (1), 62-68 (1983).
  20. Sabatini, D. D., Bensch, K., Barrnett, R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19-58 (1963).
  21. Karlsson, U., Schultz, R. Fixation of the central nervous system for electron microscopy by aldehyde perfusion: I. Preservation with aldehyde perfusates versus direct perfusion with osmium tetroxide with special reference to membranes and the extracellular space. J. Ultrastruct. Res. 12, 160-186 (1965).
  22. Sesack, S. R., Pickel, V. M. Dual ultrastructural localization of enkephalin and tyrosine hydroxylase immunoreactivity in the rat ventral tegmental area: multiple substrates for opiate-dopamine interactions. J. Neurosci. 12 (4), 1335-1350 (1992).
  23. Mathai, A., Ma, Y., Paré, J., Villalba, R. M., Wichmann, T., Smith, Y. Reduced cortical innervation of the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Brain. 138 (4), 946-962 (2015).
  24. Villalba, R. M., Paré, J., Smith, Y. Three-dimensional electron microscopy imaging of spines in non-human primates. Transmission electron microscopy methods for understanding the brain. 115, 81-103 (2016).
  25. Eid, L., Champigny, M., Parent, A., Parent, M. Quantitative and ultrastructural study of serotonin innervation of the globus pallidus in squirrel monkeys. Eur. J. Neurosci. 37 (10), 1659-1668 (2013).
  26. Eid, L., Parent, A., Parent, M. Asynaptic feature and heterogeneous distribution of the cholinergic innervation of the globus pallidus in primates. Brain Struct. Funct. 221, 1139-1155 (2016).
  27. Eid, L., Parent, M. Morphological evidence for dopamine interactions with pallidal neurons in primates. Front. Neuroanat. 9, 111-114 (2015).
  28. McDonald, K. High-pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabeling. Methods Mol. Biol. 117, 77-97 (1999).
  29. Gilkey, J., Staehelin, L. Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J. Electron Microsc. Tech. 3, 177-210 (1986).
  30. Korogod, N., Petersen, C. C. H., Knott, G. W. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. eLife. 4, (2015).
  31. Karlsson, U., Schultz, R. Fixation of the central nervous system for electron microscopy by aldehyde perfusion: III. Structural changes after exsanguination and delayed perfusion. J. Ultrastruct. Res. 14, 47-63 (1966).
  32. Schultz, R. L., Maynard, E. A., Pease, D. C. Electron microscopy of neurons and neuroglia of cerebral cortex and corpus callosum. Am. J. Anat. 100 (3), 369-407 (1957).
  33. Gocht, A. Use of LR white resin for post-embedding immunolabelling of brain tissue. Acta Anat. (Basel). 145 (4), 327-339 (1992).
  34. Eldred, W. D., Zucker, C., Karten, H. J., Yazulla, S. Comparison of fixation and penetration enhancement techniques for use in ultrastructural immunocytochemistry. J. Histochem. Cytochem. 31 (2), 285-292 (1983).
  35. Manocha, S. L. Effect of glutaraldehyde fixation on the localization of various oxidative and hydrolytic enzymes in the brain of rhesus monkey, Macaca mulatta. Histochem. J. 2 (3), 249-260 (1970).
  36. Mrini, A., Moukhles, H., Jacomy, H., Bosler, O., Doucet, G. Efficient immunodetection of various protein antigens in glutaraldehyde-fixed brain tissue. J. Histochem. Cytochem. 43 (12), 1285-1291 (1995).
  37. Storm-Mathisen, J., Ottersen, O. P. Immunocytochemistry of glutamate at the synaptic level. J. Histochem. Cytochem. 38 (12), 1733-1743 (1990).
  38. Hwang, S. J., Rustioni, A., Valtschanoff, J. G. Kainate receptors in primary afferents to the rat gracile nucleus. Neurosci. Lett. 312 (3), 137-140 (2001).
  39. Palay, S. L., McGee-Russeel, S. M., Gordon, S., Grillo, M. A. Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide. J. Cell Biol. 12, 385-410 (1962).
  40. Corthell, J. Chapter 9, Perfusion and Immersion Fixation. Basic Molecular Protocols in Neuroscience: Tips, Tricks, and Pitfalls. , 83-90 (2014).
  41. Helander, K. G. Formaldehyde prepared from paraformaldehyde is stable. Biotech. Histochem. 75 (1), 19-22 (2000).
  42. van Harreveld, A., Khattab, F. I. Perfusion fixation with glutaraldehyde and post-fixation with osmium tetroxide for electron microscopy. J. Cell. Sci. 3 (4), 579-594 (1968).
  43. Renno, W. M. Post-embedding double-gold labeling immunoelectron microscopic co-localization of neurotransmitters in the rat brain. Med. Sci. Monit. 7 (2), 188-200 (2001).
  44. Ellisman, M. H., Deerinck, T. J., Shu, X., Sosinsky, G. E. Picking Faces out of a Crowd: Genetic Labels for Identification of Proteins in Correlated Light and Electron Microscopy Imaging. Methods Cell Biol. 111, 139-155 (2012).
  45. Labrecque, S., et al. Hyperspectral multiplex single-particle tracking of different receptor subtypes labeled with quantum dots in live neurons. J. Biomed. Opt. 21 (4), 046008 (2016).
  46. Bailey, R., Smith, A., Nie, S. Quantum dots in biology and medicine. Physica E Low Dimens. Syst. Nanostruct. 25 (1), 1-12 (2004).
  47. Perkovic, M., et al. Correlative light- and electron microscopy with chemical tags. J. Struct. Biol. 186 (2), 205-213 (2014).
check_url/fr/55397?article_type=t

Play Video

Citer Cet Article
Eid, L., Parent, M. Preparation of Non-human Primate Brain Tissue for Pre-embedding Immunohistochemistry and Electron Microscopy. J. Vis. Exp. (122), e55397, doi:10.3791/55397 (2017).

View Video