Summary

레이저 캡처 서 유전자 표정 분석에 대 한 마우스 눈에서 높은 순수 배수 채널의

Published: June 03, 2018
doi:

Summary

여기, 우리 다운스트림 RNA 분석에 대 한 배수 채널 (TM)를 격리 하기 위한 재현성 레이저 캡처 기정 (LCM)에 대 한 프로토콜을 설명 합니다. TM에 유전자 발현에 변화를 분석 하는 능력은 TM 관련 눈 질병의 근본적인 분자 메커니즘을 이해에 도움이 됩니다.

Abstract

레이저 캡처 기정 (LCM)는 단일 세포의 유전자 표정 분석을 허용 하 고 조직 섹션에서 세포 인구를 풍성 하 게. LCM 기본 세포 분화와 개발 및 녹 내장을 포함 하 여 다양 한 질병의 진행 하는 분자 메커니즘의 연구에 대 한 훌륭한 도구입니다. 녹 내장, 진보적인 광섬유 neuropathies의 가족 구성, 전세계 돌이킬 수 없는 실명의 가장 흔한 원인입니다. 녹 내장을 개발 하기 위한 주요 위험 요소 증가 안구 내부 압력 (IOP), 구조 변경 및 배수 채널 (TM) 내에서 손상 발생할 수 있습니다. 그러나, 관련 된 정확한 분자 메커니즘이 아직도 제대로 이해 하 고. 유전자 표정 분석을 수행 하는 기능 추가 이러한 셀 및 IOP와 녹 내장 개발의 규칙에 있는 그것의 역할의 기능에 대 한 통찰력을 얻기에 중요 한 될 것입니다. 이를 위해, 높은 격리에 대 한 재현 방법 실시간 정량 및 RNA-Seq 필요와 같은 마우스 눈 및 다운스트림 유전자 표정 분석 방법의 냉동된 섹션에서 TM 농축. 여기에 설명 된 메서드는 다운스트림 디지털 PCR 및 microarray 분석에 대 한 마우스 눈에서 높은 순수 TM을 개발 된다. 또한,이 기술은 다른 매우 풍부한 눈 세포 및 마우스 눈에서 분리 하기 어려운 세포 구획의 격리에 대 한 쉽게 적용할 수 있습니다. LCM 및 RNA 분석의 조합을 녹 내장 기본 셀룰러 이벤트의 보다 포괄적인 이해에 기여할 수 있다.

Introduction

녹 내장 질병 광섬유 신경 및 망막 궁극적으로 돌이킬 수 없는 실명1,2리드 특징의 그룹입니다. 2020 이상에 의해 70 백만 명 세계적으로 살게 될 것입니다 질병3,,45,,67의 일종으로 추정 된다. 기본 개방 각 녹 내장 (POAG), 녹 내장, 가장 널리 퍼진 유형의 액 (AH) 유출 증가 안구 내부 압력 (IOP)8,,910, 선도 저하에 의해 특징입니다. 11,12,13,143,15,,1617,18. 왼쪽된 치료, 만성 높은 IOP 망막 및 시 신경 머리 방사형 실명1,2,19를 일으키는 진보적이 고 돌이킬 수 없는 손상으로 이어집니다. Ciliary 바디 아의 생산의 속도 감소 또는 그것의 유출1,,89, 를 강화 하 여 IOP를 감소에 녹 내장의 진행을 둔화에 대 한 모든 현재 메서드 10 , 11 , 12 , 13 , 14. 주 아 유출 통로 적극적으로 조절에 중요 한 역할을 담당 하는 배수 채널 (TM)의 부적절 한 함수 이며 고혈압 녹 내장1,,219에 대 한 원인이 되는 요소. 그러나, TM 부전와 어떻게 그것은 아 배수 조절 관련 분자 메커니즘 아직 완전히 이해 되지 않는다 며 현재 녹 내장 연구1,2,19, 의 주요 초점 20. 여러 게놈 넓은 협회 연구 결과 (GWAS)는 녹 내장 및 TM에서 아 유출 시설에 증가 저항 유전자의 수를 연결 하 고, 하는 동안 질병으로 이어질 하지 않은 정확한 분자 메커니즘이 아직 완전히 이해21 , 22 , 23 , 24 , 25.

동물 모델 크게3,15,16,26,,2728, (광범위 하 게 검토 하는 녹 내장에 질병 진행의 우리의 현재 지식 향상 29,,3031,,3233). 몇 가지 선구적인 방법은 TM34,,3536 연구 개발 되었습니다 고 정상과 병에 걸리는 직물의 우리의 현재 이해를 사전에 이러한 방법을 널리 사용 되었습니다. 하나의 영역을 광범위 하 게 탐험 되지 않은 TM 실패의 분자 메커니즘 연구를 유전자 변형된 마우스 모델의 사용 이다. 유전자 변형 노크에 Myocilin (Myoc)37,38Cyp1b139, TM 관련 유전자의 녹아웃 마우스 연구 되었습니다 공부 TM의 분자 메커니즘을 위한 기본 도구 기능입니다. 당연 하 게도, 작은 크기의 마우스에서 TM이이 조직 공부를 시작 하기 위하여 극복 되어야 하는 심각한 장애물이 나타냅니다. 마우스 모델 LCM 기술에서 가장 작고 가장 섬세 한 조직, TM 등의 연구 능력을 필요한 도구를 제공 하는 동안 유전학 및 질병의 분자 메커니즘을 공부를 위한 강력한 도구를 나타냅니다.

이 보고서에는 강력 하 고 재현 방법 후속 RNA 격리 및 다운스트림 식 분석에 대 한 증폭 마우스 눈에서 높은 농축된 TM의 LCM에 대 한 설명 되어 있습니다. 유사한 방법에서에서 사용 된 성공적으로 쥐 눈 조직40,41,42,,4344의 분리, 다른 여기 보고 방법론을 적용할 수 있습니다. RNA, 예측에 관한, DNA, 단백질 공부 하 고 눈의 개별 조직. 중요 한 것은,이 기술은 유전자 변형된 쥐 녹 내장과 눈 질병3,,1516,17 TM 장애의 분자 병 인을 이해를 사용할 수 있습니다. ,18,26,31,,4546. LCM에 의해 마우스 눈의 TM을 능력 추가 여러 눈 질환의 분자 메커니즘에 대 한 통찰력을 얻기에 있는 유용한 기술 될 것입니다.

Protocol

국립 환경 건강 과학 연구소 (NIEHS) 동물 관리 및 사용 위원회 (ACUC) NIEHS 동물 연구 제안 IIDL 05-46에서이 연구의 모든 방법론을 승인 했다. 1. 최적의 조직 컬렉션 레이저 기정에 대 한 2, 3 개월 된 생쥐를 얻을 남성 또는 여성 C57BL/6. 최소 1 분 또는 호흡 정지 했습니다 때까지 CO2 를 안락사. 감 금에서 동물을 제거 하 고 자 궁 경관 탈 구, 잘린, 또는 thoracotomy 죽음을 …

Representative Results

LCM TM에서 RNA를 수집 및 4 다른 마우스에서 모양 몸은 유전자 발현을 분석 하 고 비교 전체 눈, sclera, 홍 채, 망막, 각 막, 및 렌즈 3 별도 쥐에서 고립에서 그 식 수 절연. TM 유전자 표현, MYOC48 와 ACTA249 격리 TM 샘플 TM에 농축 실제로 높게 했다 확인 모든 수집 된 조직에서 분석 되었다. LCM 샘플에서 cDNA의 매우 낮은 수량에 따라 …

Discussion

TM는 중요 한 역할을 적극적으로 유지 하는 항상성 IOP와 그 장애는 널리 고혈압 녹 내장1,,219에 대 한 주요 원인이 되는 요소 하실. GWAS 분석에 의해 확인 된 여러 유전자에 있는 단 하나 뉴클레오티드 동 질 다 상 수 증가 녹 내장 위험 및 TM;에서 아 유출 시설에 증가 저항에 연결 된 그러나,이 질병을 정확한 분자 메커니즘은 아?…

Divulgations

The authors have nothing to disclose.

Materials

ACTA2 ddPCR Primers (dMmuCPE5117282) BioRad 10031252 FAM
Agilent 2100 Bioanalyzer Agilent Technologies G2946-90004
Agilent RNA 6000 Pico kit Agilent Technologies 5067-1513
BioRad QX200 Droplet Digital PCR System BioRad
Small Paint Brush
Charged Glass Microscope Slide Thermo scientific 4951PLUS-001
Cresyl Violet Acetate Sigma Aldrich C5042
Curved Scissors
Eosin Y dye Thermo scientific 71204
Ethanol
Forceps Curved and Serrated tip (preferred tip size: 0.5 x 0.4 mm)
HemaCen American MasterTech STHEM30
High-Capacity cDNA Reverse Transcription Kit Applied Biosystems 4368814
Hsp90a ddPCR Primers(dMmuCPE5097465) BioRad 10031255 VEX
Leica CM1850 Cryostat Leica
Millex-GS filter unit EMD Millipore SLGS033SB 0.22 µm
MMI CellCut UV Cutting Model Molecular Machines & Industries LCM intrument
MMI CellTools Software Molecular Machines & Industries 50202 LCM software
Sample Tube for Laser Capture Microdisssection ASEE Products ST-LMD-M-500 Isolation Cap Tube/Manufactured by Microdissect GmBH in Germany and distrubted by ASEE Products
Sample Tube for Laser Capture Microdisssection (Alternative) Molecular Machines & Industries
modified Harris Hematoxylin Thermo scientific 7211 FAM
MYOC ddPCR Primers (dMmuCPE5095712) BioRad 10031252
PBS
Memebrane Slides, RNase Free ASEE Products FS-LMD-M-50r Polyethylene terephthalate (PET) membrane/Manufactured by Microdissect GmBH in Germany and distrubted by ASEE Products
Memebrane Slides, RNase Free (Alternative) Molecular Machines & Industries 50102
Rapid Fix Thermo scientific 6764212 H&E staining
RLT Buffer Qiagen 79216 lysis bufffer used for LCM samples
RNAseZap Sigma R2020 RNase decontamination solution
Protect RNA RNAse Inhibitor Sigma Aldrich R7397
RNeasy Micro Kit Qiagen 74004 RNA isolation kit
SMART-Seq v4 Ultra Low Input RNA Kit Takara Clontech 634888 low input RNA to cDNA kit for LCM samples
SuperMix (no dUTP) BioRad 1863023 digital PCR master mix
Tissue-Tek Cryomold (25mm x 20mm x5mm) Sakura 4557
Tissue-Tek O.C.T. Compound Sakura 4583
Stratalinker UV Crosslinker Stratagene 400075
Xylene Macron 8668

References

  1. Foster, P. J., Buhrmann, R., Quigley, H. A., Johnson, G. J. The definition and classification of glaucoma in prevalence surveys. British Journal of Ophthalmology. 86 (2), 238-242 (2002).
  2. Quigley, H. A. Glaucoma. Lancet. 377 (9774), 1367-1377 (2011).
  3. Dismuke, W. M., Overby, D. R., Civan, M. M., Stamer, W. D. The Value of Mouse Models for Glaucoma Drug Discovery. Journal of Ocular Pharmacology and Therapeutics. 32 (8), 486-487 (2016).
  4. Quigley, H. A. Number of people with glaucoma worldwide. British Journal of Ophthalmology. 80 (5), 389-393 (1996).
  5. Quigley, H. A., Broman, A. T. The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology. 90 (3), 262-267 (2006).
  6. Resnikoff, S., et al. Global data on visual impairment in the year 2002. Bulletin World Health Organization. 82 (11), 844-851 (2004).
  7. Thylefors, B., Negrel, A. D., Pararajasegaram, R., Dadzie, K. Y. Global data on blindness. Bulletin World Health Organization. 73 (1), 115-121 (1995).
  8. . Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. American Journal of Ophthalmology. 126 (4), 487-497 (1998).
  9. . The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Collaborative Normal-Tension Glaucoma Study Group. American Journal of Ophthalmology. 126 (4), 498-505 (1998).
  10. . The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. American Journal of Ophthalmology. 130 (4), 429-440 (2000).
  11. Anderson, D. R. Collaborative normal tension glaucoma study. Current Opinion Ophthalmology. 14 (2), 86-90 (2003).
  12. Kass, M. A., et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Archives of Ophthalmology. 120 (6), 701-713 (2002).
  13. Gordon, M. O., et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Archives of Ophthalmology. 120 (6), (2002).
  14. Leske, M. C., et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Archives of Ophthalmology. 121 (1), 48-56 (2003).
  15. Chen, S., Zhang, X. The Rodent Model of Glaucoma and Its Implications. Asia-Pacific Journal Ophthalmology (Phila). 4 (4), 236-241 (2015).
  16. Fernandes, K. A., et al. Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities. Experimental Eye Research. 141, 42-56 (2015).
  17. Howell, G. R., Libby, R. T., John, S. W. Mouse genetic models: an ideal system for understanding glaucomatous neurodegeneration and neuroprotection. Progress in Brain Research. 173, 303-321 (2008).
  18. John, S. W., Anderson, M. G., Smith, R. S. Mouse genetics: a tool to help unlock the mechanisms of glaucoma. Journal of Glaucoma. 8 (6), 400-412 (1999).
  19. Braunger, B. M., Fuchshofer, R., Tamm, E. R. The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment. Eurupean Journal of Pharmaceutics and Biopharmaceutics. 95 (Pt B), 173-181 (2015).
  20. Weinreb, R. N., et al. Primary open-angle glaucoma. Nature Reviews Disease Primers. 2 (16067), (2016).
  21. Burdon, K. P. Genome-wide association studies in the hunt for genes causing primary open-angle glaucoma: a review. Clinical and Experimental Ophthalmology. 40 (4), 358-363 (2012).
  22. Iglesias, A. I., et al. Genes, pathways, and animal models in primary open-angle glaucoma. Eye (London). 29 (10), 1285-1298 (2015).
  23. Jakobs, T. C. Differential gene expression in glaucoma. Cold Spring Harbor Perspectives in Medicine. 4 (7), (2014).
  24. Jeck, W. R., Siebold, A. P., Sharpless, N. E. Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell. 11 (5), 727-731 (2012).
  25. Sakurada, Y., Mabuchi, F. Advances in glaucoma genetics. Progress in Brain Research. 220, 107-126 (2015).
  26. Agarwal, R., Agarwal, P. Rodent models of glaucoma and their applicability for drug discovery. Expert Opinion on Drug Discovery. 12 (3), 1-10 (2017).
  27. Aires, I. D., Ambrosio, A. F., Santiago, A. R. Modeling Human Glaucoma: Lessons from the in vitro Models. Ophthalmic Research. 57 (2), 77-86 (2016).
  28. Burgoyne, C. F. The non-human primate experimental glaucoma model. Experimental Eye Research. 141, 57-73 (2015).
  29. Morgan, J. E., Tribble, J. R. Microbead models in glaucoma. Experimental Eye Research. 141, 9-14 (2015).
  30. Morrison, J. C., Cepurna, W. O., Johnson, E. C. Modeling glaucoma in rats by sclerosing aqueous outflow pathways to elevate intraocular pressure. Experimental Eye Research. 141, 23-32 (2015).
  31. Overby, D. R., Clark, A. F. Animal models of glucocorticoid-induced glaucoma. Experimental Eye Research. 141, 15-22 (2015).
  32. Rybkin, I., Gerometta, R., Fridman, G., Candia, O., Danias, J. Model systems for the study of steroid-induced IOP elevation. Experimental Eye Research. 158, 51-58 (2016).
  33. Zernii, E. Y., et al. Rabbit Models of Ocular Diseases: New Relevance for Classical Approaches. CNS & Neurological Disorders – Drug Targets. 15 (3), 267-291 (2016).
  34. Gong, H., Ruberti, J., Overby, D., Johnson, M., Freddo, T. F. A new view of the human trabecular meshwork using quick-freeze, deep-etch electron microscopy. Experimental Eye Research. 75 (3), 347-358 (2002).
  35. Hoerauf, H., et al. Transscleral optical coherence tomography: a new imaging method for the anterior segment of the eye. Archives of Ophthalmology. 120 (6), 816-819 (2002).
  36. Tomarev, S. I., Wistow, G., Raymond, V., Dubois, S., Malyukova, I. Gene expression profile of the human trabecular meshwork: NEIBank sequence tag analysis. Investigative Ophthalmology & Visual Science. 44 (6), 2588-2596 (2003).
  37. Kim, B. S., et al. Targeted disruption of the myocilin gene (Myoc) suggests that human glaucoma-causing mutations are gain of function. Molecular and Cellular Biology. 21 (22), 7707-7713 (2001).
  38. Gould, D. B., et al. Genetically increasing Myoc expression supports a necessary pathologic role of abnormal proteins in glaucoma. Molecular and Cellular Biology. 24 (20), 9019-9025 (2004).
  39. Teixeira, L., Zhao, Y., Dubielzig, R., Sorenson, C., Sheibani, N. Ultrastructural abnormalities of the trabecular meshwork extracellular matrix in Cyp1b1-deficient mice. Veterinary pathology. 52 (2), 397-403 (2015).
  40. Hackler, L., Masuda, T., Oliver, V. F., Merbs, S. L., Zack, D. J. Use of laser capture microdissection for analysis of retinal mRNA/miRNA expression and DNA methylation. Retinal Development: Methods and Protocols. 884, 289-304 (2012).
  41. Gipson, I. K., Spurr-Michaud, S., Tisdale, A. Human conjunctival goblet cells express the membrane associated mucin MUC16: Localization to mucin granules. Experimental Eye Research. 145, 230-234 (2016).
  42. Sweigard, J. H., et al. The alternative complement pathway regulates pathological angiogenesis in the retina. The FASEB Journal. 28 (7), 3171-3182 (2014).
  43. Marko, C. K., et al. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye. The American Journal of Pathology. 183 (1), 35-48 (2013).
  44. Huynh, S., Otteson, D. Optimizing Laser Capture Microdissection to Study Spatiotemporal Gene Expression in the Retinal Ganglion Cell Layer. Investigative Ophthalmology & Visual Science. 54 (15), 2469-2469 (2013).
  45. Cone, F. E., Gelman, S. E., Son, J. L., Pease, M. E., Quigley, H. A. Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Experimental Eye Research. 91 (3), 415-424 (2010).
  46. McKinnon, S. J., Schlamp, C. L., Nickells, R. W. Mouse models of retinal ganglion cell death and glaucoma. Experimental Eye Research. 88 (4), 816-824 (2009).
  47. Schroeder, A., et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Molecular Biology. 7 (3), (2006).
  48. Hardy, K. M., Hoffman, E. A., Gonzalez, P., McKay, B. S., Stamer, W. D. Extracellular trafficking of myocilin in human trabecular meshwork cells. Journal of Biological Chemistry. 280 (32), 28917-28926 (2005).
  49. Morgan, J. T., et al. Human trabecular meshwork cells exhibit several characteristics of, but are distinct from, adipose-derived mesenchymal stem cells. Journal of Ocular Pharmacology and Therapeutics. 30 (2-3), 254-266 (2014).
  50. Hindson, C. M., et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods. 10 (10), 1003-1005 (2013).
  51. Wang, W. Z., Oeschger, F. M., Lee, S., Molnar, Z. High quality RNA from multiple brain regions simultaneously acquired by laser capture microdissection. BMC Molecular Biology. 10 (69), (2009).
  52. Cummings, M., et al. A robust RNA integrity-preserving staining protocol for laser capture microdissection of endometrial cancer tissue. Analytical Biochemistry. 416 (1), 123-125 (2011).

Play Video

Citer Cet Article
Sutherland, C., Wang, Y., Brown, R. V., Foley, J., Mahler, B., Janardhan, K. S., Kovi, R. C., Jetten, A. M. Laser Capture Microdissection of Highly Pure Trabecular Meshwork from Mouse Eyes for Gene Expression Analysis. J. Vis. Exp. (136), e57576, doi:10.3791/57576 (2018).

View Video