Summary

Visualisere cytoskeletale vækst kegle sammenbrud og tidlige Amyloid β effekter i kulturperler mus neuroner

Published: October 30, 2018
doi:

Summary

Her præsenteres en protokol til at undersøge de tidlige effekter af amyloid-β (Aβ) i hjernen. Dette viser, at Aβ fremkalder clathrin-medieret endocytose og sammenbrud af cytoskeletale vækst kegler. Protokollen er nyttige i at studere tidlige effekter af Aβ på cytoskeletale vækst kegler og kan lette forebyggelse af Alzheimers sygdom.

Abstract

Amyloid-β (Aβ) forårsager hukommelse funktionshæmninger i Alzheimers sygdom (AD). Selvom terapi har vist sig at reducere Aβ i hjernen hos AD patienter, forbedrer disse ikke hukommelsesfunktioner. Da Aβ aggregater i hjernen før fremkomsten af hukommelse svækkelser, kan målretning Aβ være ineffektivt til behandling af annonce patienter, der allerede udviser hukommelse underskud. Derfor bør downstream signalering på grund af Aβ deposition blokeres før AD udvikling. Aβ inducerer cytoskeletale degeneration, fører til forstyrrelser af neuronal netværk og hukommelse funktionshæmninger. Selvom der er mange undersøgelser om mekanismerne af Aβ toksicitet, kilden til Aβ toksicitet er fortsat ukendt. For at hjælpe med at identificere kilden, foreslår vi en roman protocol, der bruger mikroskopi, gen Transfektion og levende celle imaging for at undersøge tidlige ændringer forårsaget af Aβ i cytoskeletale vækst kogler af kulturperler neuroner. Denne protokol afslørede, at Aβ induceret clathrin-medieret endocytose i cytoskeletale vækst kegler efterfulgt af vækst kegle sammenbrud, demonstrerer, at hæmning af endocytose forhindrer Aβ toksicitet. Denne protokol vil være nyttige i at studere de tidlige effekter af Aβ og kan føre til mere effektive og forebyggende AD behandling.

Introduction

Amyloid-β (Aβ) indlån findes i hjernen hos patienter med Alzheimers sygdom (AD) og betragtes som en afgørende årsag til annonce1 der forstyrrer neuronal netværk, fører til hukommelse nedskrivninger2,3,4. Mange kliniske lægemiddelkandidater har vist sig at effektivt forhindre amyloid-β (Aβ) produktion eller fjerne Aβ-aflejringer. Dog lykkedes ingen forbedring hukommelsesfunktion i AD patienter5. Aβ er allerede deponeret i hjernen før igangsættelsen af hukommelse funktionshæmninger6; Derfor kan faldende Aβ niveauer i hjernen hos patienter udstillende hukommelse funktionsnedsættelser være ineffektive. Aβ deposition er til stede i prækliniske AD patienter; men disse patienter sjældent præsentere med neuronal degeneration og hukommelse underskud6. Der er en tidsforskydning mellem Aβ deposition og hukommelse funktionshæmninger. Derfor en kritisk strategi for forebyggelse af AD blokering Aβ toksicitet signalering i de tidlige stadier af Annoncen, før udviklingen af hukommelse underskud. Aβ deposition inducerer axon degeneration7,8,9,10,11,12,13, hvilket kan føre til en afbrydelse af neurale netværk og permanent svækkelse af hukommelsesfunktion. Mange studier har undersøgt mekanismerne i Aβ toksicitet; for eksempel, har de degenererede axoner af annonce mus hjerner vist sig at har øget autophagy14. Calcineurin aktivering er blevet rapporteret som en mulig mekanisme af Aβ-induceret cytoskeletale degeneration15; men den direkte udløsende faktor for cytoskeletale degeneration forbliver ukendt.

Denne undersøgelse fokuserer på sammenbruddet af cytoskeletale endelser kaldet vækst kegler. Sammenbruddet af cytoskeletale vækst kegler kan være forårsaget af cytoskeletale vækst afskrækningsmidler, såsom semaphorin 3A og ephrin-A516,17,18,19,20. Sammenbrud-lignende dystrofe cytoskeletale endelser er blevet observeret i hjernen hos AD patienter21,22. Derudover kan manglende vækst kegle funktion provokere cytoskeletale degeneration23. Men det er uvist om Aβ inducerer vækst kegle sammenbrud. Derfor, denne undersøgelse præsenterer en roman protokol for at observere de tidlige effekter af Aβ i kulturperler neuroner og undersøge Aβ-induceret vækst kegle sammenbrud.

Protocol

Alle eksperimenter blev udført i overensstemmelse med retningslinjerne for pleje og brugen af forsøgsdyr ved de Sugitani Campus i University Toyama og blev godkendt af Udvalget for Animal Care og brugen af forsøgsdyr ved de Sugitani Campus af den Universitet af Toyama (A2014INM-1, A2017INM-1). 1. sammenbrud Assay Poly-D-lysin belægning Pels 8-godt kultur dias med 400 μL af 5 μg/mL poly-D-lysin (PDL) i fosfatbufferet saltopløsning (PBS) og inkuberes dem ved 37 ° C natt…

Representative Results

I denne protokol, var Aβ1-42 inkuberes ved 37 ° C i 7 dage før brug, fordi inkubation af Aβ1-42 var nødvendig for at producere giftige former27,28,30,35. Efter denne inkubation blev aggregerede former for Aβ observeret (figur 1A). Det er blevet rapporteret, at lignende inkubation af Aβ1-42 produceret fibril form af Aβ<sup cl…

Discussion

Den protokol, der er beskrevet i denne undersøgelse aktiveret observation af tidlige fænomener i cytoskeletale vækst kegler efter Aβ1-42 behandling. Aβ1-42 induceret endocytose i cytoskeletale vækst kegler indenfor 20 min, og vækst kegle sammenbrud blev observeret i 1 h af behandling. Denne endocytose var sandsynligvis medieret af clathrin. Ved hjælp af denne protokol, blev hæmning af clathrin-medieret endocytose bekræftet for at forhindre Aβ1-42-induceret vækst kegle sammenbrud og cytoskeletale degeneration …

Divulgations

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev delvist støttet af forskningstilskud fra JSP’ER (KAKENHI 18K 07389), Japan, Takeda Science Foundation, Japan og Kobayashi Pharmaceutical Co, Ltd, Japan.

Materials

ddY mice SLC
Eight-well culture slide Falcon 354108
poly D lysine Wako 168-19041
Culture medium, Neurobasal medium Gibco 21103-049
house serum Gibco 26050-088
glucose Wako 049-31165
L-glutamine Wako 074-00522
0.05% trypsin Gibco 25300-054
DNase I Worthington DP
soybean trypsin inhibitor Gibco 17075-029
Filter with 70 µm mesh size, cell strainer Falcon 352350
B-27 supplement Gibco 17504-044
CO2 incubator Astec SCA-165DS
Amyloid β1-42 Sigma-Aldrich A9810
paraformaldehyde Wako 162-16065
sucrose  Wako 196-00015
Aqueous mounting medium, Aqua-Poly/Mount polysciences 18606-20
Inverted microscope A Carl Zeiss Axio Observer Z1  Connected with AxioCam MRm, Heating Unit XL S, CO2 Module S1, and TempModule S1
Objective Plan-Apochromat 20x Carl Zeiss 420650-9901
Objective Plan-Apochromat 63x Carl Zeiss 440762-9904
Objective, CFI Plan Apo Lambda 40X Nikon
anti-MAP2 IgG Abcam ab32454
anti-tau-1 IgG Chemicon MAB3420
anti-amyloid β antibody IBL 10379 clone 11A1
normal goat serum Wako 143-06561
bovine serum albumin Wako 010-25783
t-octylphenoxypolyethoxyethanol Wako 169-21105
goat anti-mouse IgG conjugated with AlexaFluor 594 Invitrogen A11032
goat anti-rabbit IgG conjugated with AlexaFluor 488 Invitrogen A11029
hot plate NISSIN NHP-M30N
cover glass Fisher Scientific 12-545-85
35 mm dish IWAKI 1000-035
Silicone RTV Shin-Etsu KE42T
hand punch Roper Whitney No. XX
Fluorescence membrane probe, FM1-43FX Invitrogen F35355
Ca2+– and Mg2+-free Hanks' balanced salt solution Gibco 14175-095
Transfection solution, Nucleofector solution Lonza VPG-1001
Electroporator, Nucleofector I Amaxa
Inverted microscope B Keyence BZ-X710
Image software, ImageJ NIH https://imagej.nih.gov/ij/

References

  1. Selkoe, D. J., Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine. 8 (6), 595-608 (2016).
  2. Dickson, T. C., Vickers, J. C. The morphological phenotype of beta-amyloid plaques and associated neuritic changes in Alzheimer’s disease. Neurosciences. 105 (1), 99-107 (2001).
  3. Hardy, J., Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 297 (5580), 353-356 (2002).
  4. Perl, D. P. Neuropathology of Alzheimer’s disease. Mount Sinai Journal of Medicine. 77 (1), 32-42 (2010).
  5. Graham, W. V., Bonito-Oliva, A., Sakmar, T. P. Update on Alzheimer’s Disease Therapy and Prevention Strategies. Annual Review of Medicine. 68, 413-430 (2017).
  6. Jack, C. R., et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology. 9 (1), 119-128 (2010).
  7. Kuboyama, T., Tohda, C., Komatsu, K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. British Journal of Pharmacology. 144 (7), 961-971 (2005).
  8. Tohda, C., Urano, T., Umezaki, M., Nemere, I., Kuboyama, T. Diosgenin is an exogenous activator of 1,25D3-MARRS/Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice. Scientific Reports. 2, 535 (2012).
  9. Jawhar, S., Trawicka, A., Jenneckens, C., Bayer, T. A., Wirths, O. Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiology of Aging. 33 (1), e129-e140 (2012).
  10. Postuma, R. B., et al. Substrate-bound beta-amyloid peptides inhibit cell adhesion and neurite outgrowth in primary neuronal cultures. Journal of Neurochemistry. 74 (3), 1122-1130 (2000).
  11. Tohda, C., Nakada, R., Urano, T., Okonogi, A., Kuboyama, T. Kamikihi-to (KKT) rescues axonal and synaptic degeneration associated with memory impairment in a mouse model of Alzheimer’s disease, 5XFAD. International Journal of Neuroscience. 121 (12), 641-648 (2011).
  12. Tsai, J., Grutzendler, J., Duff, K., Gan, W. B. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature Neuroscience. 7 (11), 1181-1183 (2004).
  13. Wirths, O., Weis, J., Kayed, R., Saido, T. C., Bayer, T. A. Age-dependent axonal degeneration in an Alzheimer mouse model. Neurobiology of Aging. 28 (11), 1689-1699 (2007).
  14. Sanchez-Varo, R., et al. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathologica. 123 (1), 53-70 (2012).
  15. Wu, H. Y., et al. Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. Journal of Neuroscience. 30 (7), 2636-2649 (2010).
  16. Campbell, D. S., Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron. 32 (6), 1013-1026 (2001).
  17. Jurney, W. M., Gallo, G., Letourneau, P. C., McLoon, S. C. Rac1-mediated endocytosis during ephrin-A2- and semaphorin 3A-induced growth cone collapse. Journal of Neuroscience. 22 (14), 6019-6028 (2002).
  18. Luo, Y., Raible, D., Raper, J. A. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell. 75 (2), 217-227 (1993).
  19. Nicol, X., Muzerelle, A., Rio, J. P., Metin, C., Gaspar, P. Requirement of adenylate cyclase 1 for the ephrin-A5-dependent retraction of exuberant retinal axons. Journal of Neuroscience. 26 (3), 862-872 (2006).
  20. Wu, K. Y., et al. Local translation of RhoA regulates growth cone collapse. Nature. 436 (7053), 1020-1024 (2005).
  21. Benes, F. M., Farol, P. A., Majocha, R. E., Marotta, C. A., Bird, E. D. Evidence for axonal loss in regions occupied by senile plaques in Alzheimer cortex. Neurosciences. 42 (3), 651-660 (1991).
  22. Masliah, E., et al. An antibody against phosphorylated neurofilaments identifies a subset of damaged association axons in Alzheimer’s disease. American Journal of Pathology. 142 (3), 871-882 (1993).
  23. Zhou, F. Q., Snider, W. D. Intracellular control of developmental and regenerative axon growth. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 361 (1473), 1575-1592 (2006).
  24. Teshigawara, K., et al. A novel compound, denosomin, ameliorates spinal cord injury via axonal growth associated with astrocyte-secreted vimentin. British Journal of Pharmacology. 168 (4), 903-919 (2013).
  25. Kuboyama, T., Tohda, C., Komatsu, K. Withanoside IV and its active metabolite, sominone, attenuate A beta(25-35)-induced neurodegeneration. European Journal of Neuroscience. 23 (6), 1417-1426 (2006).
  26. Tanabe, N., Kuboyama, T., Tohda, C. Matrine Directly Activates Extracellular Heat Shock Protein 90, Resulting in Axonal Growth and Functional Recovery in Spinal Cord Injured-Mice. Frontiers in Pharmacology. 9 (446), (2018).
  27. Kuboyama, T., Lee, Y. A., Nishiko, H., Tohda, C. Inhibition of clathrin-mediated endocytosis prevents amyloid beta-induced axonal damage. Neurobiology of Aging. 36 (5), 1808-1819 (2015).
  28. Pike, C. J., Walencewicz, A. J., Glabe, C. G., Cotman, C. W. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Research. 563 (1-2), 311-314 (1991).
  29. Uchida, N., et al. Yokukansan inhibits social isolation-induced aggression and methamphetamine-induced hyperlocomotion in rodents. Biological and Pharmaceutical Bulletin. 32 (3), 372-375 (2009).
  30. Pike, C. J., Burdick, D., Walencewicz, A. J., Glabe, C. G., Cotman, C. W. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. Journal of Neuroscience. 13 (4), 1676-1687 (1993).
  31. Kuboyama, T., Hirotsu, K., Arai, T., Yamasaki, H., Tohda, C. Polygalae Radix Extract Prevents Axonal Degeneration and Memory Deficits in a Transgenic Mouse Model of Alzheimer’s Disease. Frontiers in Pharmacology. 8, 805 (2017).
  32. Dotti, C. G., Sullivan, C. A., Banker, G. A. The establishment of polarity by hippocampal neurons in culture. Journal of Neuroscience. 8 (4), 1454-1468 (1988).
  33. Arimura, N., Kaibuchi, K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nature Reviews: Neuroscience. 8 (3), 194-205 (2007).
  34. De Felice, F. G., et al. Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiology of Aging. 29 (9), 1334-1347 (2008).
  35. Izuo, N., et al. Toxicity in Rat Primary Neurons through the Cellular Oxidative Stress Induced by the Turn Formation at Positions 22 and 23 of Aβ42. ACS Chemical Neuroscience. 3 (9), 674-681 (2012).
  36. Fujiwara, H., et al. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer’s beta-amyloid proteins. Journal of Neuroscience Research. 84 (2), 427-433 (2006).
  37. Murakami, K., et al. Monoclonal antibody against the turn of the 42-residue amyloid beta-protein at positions 22 and 23. ACS Chemical Neuroscience. 1 (11), 747-756 (2010).
  38. Ford, M. G., et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science. 291 (5506), 1051-1055 (2001).
  39. Tojima, T., Itofusa, R., Kamiguchi, H. Asymmetric clathrin-mediated endocytosis drives repulsive growth cone guidance. Neuron. 66 (3), 370-377 (2010).
  40. Ahmed, G., et al. Draxin inhibits axonal outgrowth through the netrin receptor DCC. Journal of Neuroscience. 31 (39), 14018-14023 (2011).
  41. Brennaman, L. H., Moss, M. L., Maness, P. F. EphrinA/EphA-induced ectodomain shedding of neural cell adhesion molecule regulates growth cone repulsion through ADAM10 metalloprotease. Journal of Neurochemistry. 128 (2), 267-279 (2014).
  42. Tojima, T., et al. Attractive axon guidance involves asymmetric membrane transport and exocytosis in the growth cone. Nature Neuroscience. 10 (1), 58-66 (2007).
  43. Ooashi, N., Futatsugi, A., Yoshihara, F., Mikoshiba, K., Kamiguchi, H. Cell adhesion molecules regulate Ca2+-mediated steering of growth cones via cyclic AMP and ryanodine receptor type 3. Journal of Cell Biology. 170 (7), 1159-1167 (2005).
  44. Biswas, S., Kalil, K. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones. Journal of Neuroscience. 38 (2), 291-307 (2018).
  45. Kuboyama, T., et al. Paxillin phosphorylation counteracts proteoglycan-mediated inhibition of axon regeneration. Experimental Neurology. 248, 157-169 (2013).
check_url/fr/58229?article_type=t

Play Video

Citer Cet Article
Kuboyama, T. Visualizing Axonal Growth Cone Collapse and Early Amyloid β Effects in Cultured Mouse Neurons. J. Vis. Exp. (140), e58229, doi:10.3791/58229 (2018).

View Video