Summary

脂多糖注射液致大鼠亚急性脑 Microhemorrhages

Published: October 17, 2018
doi:

Summary

我们提出了一种诱导和检测杜勒大鼠 LPS 注射液引起的中草药的实验方案, 可用于今后中草药的发病机制研究。

Abstract

脑 microhemorrhages (中草药) 在老年患者中是常见的, 与各种神经精神障碍相关。中草药的病因是复杂的, 神经炎症经常被观察作为共同发生。本文介绍了一种由脂多糖 (LPS) 注射液诱导的亚急性中草药大鼠模型, 以及一种检测中草药的方法. 系统性 LPS 注射液相对简单、经济、经济实惠。LPS 注射液的一个主要优点是它的稳定性导致炎症。通过观察、苏木精和伊红 (he) 染色、Perl 普鲁士染色、埃文斯蓝 (EB) 双重标记和磁共振成像-易感性加权成像 (MRI-中草药) 技术, 可以检测到 LPS 注射液引起的。最后, 本报告还讨论了其他开发中草药动物模型的方法, 包括它们的优点和/或缺点。

Introduction

经典脑 microhemorrhages (中草药) 是指血液降解产物的微小血管周围沉积物, 如含铁血黄素从脑1中的红细胞。根据鹿特丹扫描研究, 中草药可以发现在近17.8% 的人60–69岁和38.3% 在那些80年2。中草药在老年人中的患病率较高, 中草药的积累与认知和神经精神功能障碍之间的相关性已建立3,4。最近报道了中草药的几种动物模型, 包括 IV 型胶原酶立体定向注射液5、应用转基因6、β n-甲基氨基-l-丙氨酸暴露7、高血压8等诱发的啮齿动物模型,由全身炎症诱发的中草药是最接受的选择之一。费舍尔9首次使用的 LPS 来源于鼠伤寒沙门氏菌, 开发出一种急性中草药小鼠模型。随后, 同一组报告了使用相同方法2的亚急性中草药小鼠模型的发展。

LPS 被认为是一个标准化的炎症刺激通过腹腔注射。先前的研究证实, LPS 注射液可能导致神经炎症, 在动物模型2,10中大量的小胶质细胞和星形胶质细胞活化反应。此外, 神经炎症活化激活与中草药数量之间有正相关关系, 已建立210。在前人研究的基础上, 通过腹腔注射 LPS, 建立了中草药大鼠模型。

检测技术的进步导致了中草药研究调查的数量增加。最广泛公认的检测中草药的方法包括通过苏木精和伊红 (he) 染色检测红血球, 普鲁士蓝染色9检测铁铁, 通过免疫荧光法检测埃文斯蓝 (EB) 沉积物成像和7.0 特斯拉磁共振成像-易感性加权成像 (MRI-社会工作)10。本研究旨在开发一种中草药的筛选方法。

Protocol

这里描述的所有方法都已获得中国人民解放军陆军总医院动物护理和使用委员会 (ACUC) 的批准。 1. 材料 LPS 注射液的制备 将25毫升蒸馏水添加到25毫克的 LPS 粉末中, 从鼠伤寒到最终浓度为1毫克/毫升。将注射剂储存在4摄氏度的无菌管中。注意: LPS 是有毒的。 在正常0.9% 盐水溶液中制备 2% eb 溶液, 以保持 eb 注射液在工作浓度。 <p …

Representative Results

中草药可以使用各种方法检测到。最接受的方法包括: (1) 表面中草药的总观测和评估 (如图 1、上部板所示);(2) he 染色检测红细胞 (图2A、上部板) 或普鲁士染色检测红细胞裂解产生的铁 (图 2A、下部板);(3) eb 双重染色检测从 BBB 泄漏中提取的 eb 沉积物 (图 3, 左面板);(4) MRI-中草药 hypointe…

Discussion

中草药的研究在过去几年中有所增加。然而, 中草药的机制仍然不清楚, 促使科学家建立模拟这种特殊情况的动物模型。例如, 霍夫曼。开发了缺氧诱导的中草药小鼠模型, 表明中草药是由缺氧和脑血管自动调节12的破坏引起的。路透社5在 APP23-transgenic 小鼠中建立了中草药模型, 表明脑淀粉样血管病 (CAA) 在中草药病因中起着重要作用. 费舍尔<em…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢健丰老师和首都医科大学的同事在核磁共振成像方面的指导。我们还感谢宜昌第二人民医院神经病学系提供技术支持。

Materials

LPS Sigma-Aldrich L-2630 for inflammation induction
EB Sigma-aldrich E2129 for EB leakage detection
DAPI dying solution Servicbio G1012 count medium for IF
Perl’s Prussian staining Solarbio G1424 Kit for Prussian staining
HE staining Solarbio G1120 Kit for HE staining
chloral hydrate Sigma-Aldrich 47335U For anesthesia
phosphate buffer saline (PBS) Solarbio P1022 a kind of buffer solution commonly used in experiment
0.9% saline solution Hainan DonglianChangfu Pharmaceutical Co., Ltd., China solution for perfusion
paraformaldehyde Sigma-Aldrich 158127 a kind of solution commonly used for fixation
20% sucrose solution Solarbio G2461 a kind of solution commonly used for fixation
30% sucrose solution Solarbio G2460 a kind of solution commonly used for fixation
vet ointment Solcoseryl eye gel, Bacel, Switzerland for rat's eyes protection

References

  1. Sumbria, R. K., et al. A murine model of inflammation-induced cerebral microbleeds. J Neuroinflammation. 13 (1), 218 (2016).
  2. Vernooij, M. W., et al. Prevalence and risk factors of cerebral microbleeds the Rotterdam Scan Study. Neurology. 70 (14), 1208-1214 (2009).
  3. Pettersen, J. A., et al. Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook dementia study. Archives of Neurology. 65 (6), 790-795 (2008).
  4. Xu, X., et al. Cerebral microbleeds and neuropsychiatric symptoms in an elderly Asian cohort. Journal of Neurology, Neurosurgery, and Psychiatry. 88 (1), 7-11 (2017).
  5. Mcauley, G., Schrag, M., Barnes, S., Obenaus, A., Dickson, A., Kirsch, W. In vivo iron quantification in collagenase-induced microbleeds in rat brain. Magnetic Resonance in Medicine. 67 (3), 711-717 (2012).
  6. Reuter, B., et al. Development of cerebral microbleeds in the APP23-transgenic mouse model of cerebral amyloid angiopathy-a 9.4 tesla MRI study. Frontiers in Aging Neuroscience. 8 (8), 170 (2016).
  7. Scott, L. L., Downing, T. G. A single neonatal exposure to BMAA in a rat model produces neuropathology consistent with neurodegenerative diseases. Toxins. 10 (1), E22 (2018).
  8. Toth, P., et al. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell. 14 (3), 400-408 (2015).
  9. Liu, S., et al. Comparative analysis of H&E and Prussian blue staining in a mouse model of cerebral microbleeds. Journal of Histochemistry & Cytochemistry. 62 (11), 767-773 (2014).
  10. Zeng, J., Zhào, H., Liu, Z., Zhang, W., Huang, Y. Lipopolysaccharide induces subacute cerebral microhemorrhages with involvement of Nitric Oxide Synthase in rats. Journal of Stroke and Cerebrovascular Diseases. 27 (7), 1905-1913 (2018).
  11. Greenberg, S. M., et al. Cerebral microbleeds: A guide to detection and interpretation. Lancet Neurology. 8 (2), 165-174 (2009).
  12. Hoffmann, A., et al. High-Field MRI reveals a drastic increase of hypoxia-induced microhemorrhages upon tissue reoxygenation in the mouse brain with strong predominance in the olfactory bulb. Plos One. 11 (2), e0148441 (2016).
  13. Sumbria, R. K., et al. Effects of phosphodiesterase 3A modulation on murine cerebral microhemorrhages. Journal of Neuroinflammation. 14 (1), 114 (2017).
  14. Sumbria, R. K., et al. Aging exacerbates development of cerebral microbleeds in a mouse model. Journal of Neuroinflammation. 15 (1), 69 (2018).
  15. Mello, B. S. F., et al. Sex influences in behavior and brain inflammatory and oxidative alterations in mice submitted to lipopolysaccharide-induced inflammatory model of depression. Journal of Neuroimmunol. 320, 133-142 (2018).
  16. Souza, D. F. D., et al. Changes in astroglial markers in a maternal immune activation model of schizophrenia in Wistar rats are dependent on sex. Frontiers in Cellular Neuroscience. 9 (489), (2015).
  17. Dutta, G., Zhang, P., Liu, B. The Lipopolysaccharide Parkinson’s disease animal model: mechanistic studies and drug discovery. Fundamental & Clinical Pharmacology. 22 (5), 453-464 (2008).
  18. El-Sayed, N. S., Bayan, Y. Possible role of resveratrol targeting estradiol and neprilysin pathways in lipopolysaccharide model of Alzheimer disease. Advances in Experimental Medicine and Biology. 822 (822), 107-118 (2015).
  19. Combrinck, M. I., Perry, V. H., Cunningham, C. Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neurosciences. 112 (1), 7-11 (2002).
  20. Pantoni, L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurology. 9 (7), 689-701 (2010).
  21. Rosand, J., et al. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Annals of Neurology. 58 (3), 459-462 (2005).
  22. Robinson, S., et al. Microstructural and microglial changes after repetitive mild traumatic brain injury in mice. Journal of Neuroscience Research. 95 (4), 1025-1035 (2017).
  23. Kraft, P., et al. Hypercholesterolemia induced cerebral small vessel disease. Plos One. 12 (8), e0182822 (2017).
  24. Schreiber, S., Bueche, C. Z., Garz, C., Baun, H. Blood brain barrier breakdown as the starting point of cerebral small vessel disease? – New insights from a rat model. Experimental & Translational Stroke Medicine. 5 (1), 4 (2013).
check_url/fr/58423?article_type=t

Play Video

Citer Cet Article
Li, D., Zhào, H., Wei, W., Liu, N., Dr. Huang, Y. Sub-acute Cerebral Microhemorrhages Induced by Lipopolysaccharide Injection in Rats. J. Vis. Exp. (140), e58423, doi:10.3791/58423 (2018).

View Video