Summary

普帕尔阶段发育性皮瘤中组织定向和生长动力学的成像与分析

Published: June 02, 2020
doi:

Summary

该协议旨在成像和分析果蝇在果蝇发生变质时,果蝇腹部上皮细胞定向和组织生长动力学。本文描述的方法可用于研究果蝇或其他模型生物体的不同发育阶段、组织和亚细胞结构。

Abstract

在多细胞生物体中,成熟的组织和器官在其组成细胞的空间排列中表现出高度的秩序。感官上皮给出了一个显著的例子,其中相同或不同身份的细胞通过细胞粘附性(显示高度组织的平面模式)聚集在一起。单元格以相同的方向相互对齐,并在较大距离内显示等效极性。成熟的上皮体组织是在形态形成过程中建立的。为了理解成熟上皮的平面排列是如何实现的,在体内发育过程中以高时空保真度跟踪细胞方向和生长动力学至关重要。强大的分析工具对于识别和描述本地到全球的过渡也至关重要。果蝇小狗是一个理想的系统,用于评估定向细胞形状变化的基础上皮形态发生。上皮发育的皮毛构成不动体的外表面,允许对完整动物进行长期成像。此处描述的协议旨在成像和分析在皮球腹部表皮生长时全球和局部水平的细胞行为。所述方法可轻松适应其他发育阶段、组织、亚细胞结构或模型生物体的细胞行为成像。

Introduction

为了发挥自身的作用,上皮组织完全依赖于其细胞成分的空间组织。在大多数上皮上,细胞不仅相互挤合,以形成精确的鹅卵石层,而且相对于身体轴的方向。

精确组织组织的功能重要性在感觉上皮中显而易见,如脊椎动物内耳和视网膜。在第一种情况下,头发和支撑细胞以特定的轴向方向对齐,以有效感知机械输入,如声音和运动11、22。同样,光受体细胞空间组织对于通过视网膜3实现最佳光学特性至关重要。因此,细胞位置和方向的空间控制对于适当的生理功能具有特别重要的意义。

蝇是一种全息昆虫,通过蜕变,对幼虫体结构进行完全转化,导致其成年组织。果蝇pupa是一个优秀的模型,用于各种动态事件的非侵入性活成像,包括发育细胞迁移4、细胞分裂和生长动力学5、肌肉收缩6、细胞死亡7、伤口修复8和细胞定向9。在成人果蝇中,外部上皮表现出高度的秩序。这很容易观察到的三角(即,细胞突起源自单上皮细胞)和感觉刷毛遍布苍蝇的身体表面10。事实上,三角线排列在平行行引导气流11。成人上皮的形态和单个细胞的有序排列在胚胎生成期间开始,并在胚胎阶段达到高潮。虽然在胚胎细胞分裂,杂交和形状的变化都减少组织顺序12,13,这是在发育的后期阶段,特别是在pupal阶段,当苍蝇接近成熟12,9。

不动的果蝇小狗提供了一个理想的系统来评估细胞的形状和方向变化。皮巴腹部表皮具有特殊优势。当成年头、胸腔、生殖器和附属物的前体生长并从幼虫阶段得到图案时,被集成到幼虫表皮中的组状细胞开始生长和区分,仅在幼崽14。此功能允许跟踪所有参与建立组织秩序的时空事件

在胚胎发育期间,在每个假定腹段的相反位置指定了组织爆炸。成人的背腹部表皮来自地主位置的组震巢穴,存在于前和后舱15,16。15,当组织爆炸扩大,取代幼虫上皮细胞(LECs),反向巢在背侧中线引信形成一个汇管板17,18,19,20。17,18,19,20

本研究描述了1)一种对果蝇小狗进行解剖、安装和长期实时成像的方法,以及2)以高时空分辨率研究细胞定向和生长动力学的分析方法。此处提供了详细的协议,涵盖从初始 pupae 制备(即暂存和成像)到定向和方向特征的提取和定量所需的所有步骤。我们还描述了如何从细胞克隆的分析中推断局部组织特性。所述的所有步骤都是微创的,允许长期实时分析。此处描述的方法可以很容易地适应并应用于其他发育阶段、组织或模型生物体。

Protocol

注:该协议分为五个步骤:(1) 暂存小狗,(2) 准备小狗成像,(3) 生长的腹部上皮的活成像,(4) 生成遗传马赛克,(5) 数据处理和分析(包括描述如何从细胞结轮廓分析细胞方向动力学和细胞克隆的生长动力学的部分)。 1. 成像前分期使用果蝇小狗 产卵(AEL)后,在25°C(±12小时)的塑料小瓶中培养标准基的相应基因型,5天(±12小时)。注:?…

Representative Results

上述协议包括为长期活体成像制备果蝇小狗,以及分析腹部表皮细胞取向和生长动力学的程序。通过应用这种方法,可以生成发育中的普帕的高分辨率电影,时间长达48小时,而不会显著光漂白或光毒性。图4显示了描绘不同时间点和从不同角度方向的pupae的腹部表皮(例如,组织爆炸和LECs)的快照。对这些电影的后续分析能够识别和量化在扩?…

Discussion

远程顺序是大多数功能性生理单元的基本特征。在形态生成过程中,通过集成以高时空精度实现的复杂指令来实现顺序。多级和多级约束被集成到定型的组织安排中。

极性和定向性对于开发过程中的有序空间排列至关重要。极性意味着在开发过程中对称性断裂。实现不对称是必要的,以确定胚胎前背(A/P)和多索温托(D/V)轴和成人组织26。除了这种早期作…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们要感谢马丁-布兰科实验室的成员进行了有益的讨论。我们还感谢尼克·塔彭(英国伦敦克里克研究所)、布卢明顿股票中心(美国印第安纳大学)和FlyBase(关于果蝇基因注释)。费德里卡·曼吉奥内得到了JAE-CSIC博士前研究金的支持。马丁-布兰科实验室的资金来自”科学科学和科学投资方案”(BFU2014-57019-P和BFU2017-82876-P)和拉蒙阿雷塞斯基金会。

Materials

Analysis Software ImageJ Analyzing data
Drosophila Atpa::GFP Strains employed for data collection
Drosophila hsflp1.22;FRT40A/FRT40A Ubi.RFP.nls Strains employed for data collection
Dumont 5 Forceps FST 11251-20 1.5 mm diameter for dissection
Glass Bottom Plates Mat Tek P35G-0.170-14-C Mounting pupae for data collection
Halocarbon Oil 27 Sigma-Aldrich 9002-83-9 mounting pupae
Inverted Confocal microscope Zeiss LSM700 Data collection
Stereomicroscope Leica DFC365FX Visualization of the pupae during dissection

References

  1. Gillespie, P. G., Muller, U. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell. 139, 33-44 (2009).
  2. Deans, M. R. A balance of form and function: planar polarity and development of the vestibular maculae. Seminars in Cellular and Developmental Biology. 24, 490-498 (2013).
  3. Stell, W. K. The structure and morphologic relations of rods and cones in the retina of the spiny dogfish, Squalus. Comparative Biochemistry and Physiology – Part A: Comparative Physiology. 42, 141-151 (1972).
  4. Ninov, N., Chiarelli, D. A., Martin-Blanco, E. Extrinsic and intrinsic mechanisms directing epithelial cell sheet replacement during Drosophila metamorphosis. Development. 134, 367-379 (2007).
  5. Bosveld, F., et al. Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway. Science. 336, 724-727 (2012).
  6. Puah, W. C., Wasser, M. Live imaging of muscles in Drosophila metamorphosis: Towards high-throughput gene identification and function analysis. Methods. 96, 103-117 (2016).
  7. Teng, X., Qin, L., Le Borgne, R., Toyama, Y. Remodeling of adhesion and modulation of mechanical tensile forces during apoptosis in Drosophila epithelium. Development. 144, 95-105 (2017).
  8. Weavers, H., et al. Systems Analysis of the Dynamic Inflammatory Response to Tissue Damage Reveals Spatiotemporal Properties of the Wound Attractant Gradient. Current Biology. 26, 1975-1989 (2016).
  9. Mangione, F., Martin-Blanco, E. The Dachsous/Fat/Four-Jointed Pathway Directs the Uniform Axial Orientation of Epithelial Cells in the Drosophila Abdomen. Cell Reports. 25, 2836-2850 (2018).
  10. Casal, J., Struhl, G., Lawrence, P. A. Developmental compartments and planar polarity in Drosophila. Current Biology. 12, 1189-1198 (2002).
  11. Wootton, R. How flies fly. Nature. 400, 112-113 (1999).
  12. Zallen, J. A., Wieschaus, E. Patterned gene expression directs bipolar planar polarity in Drosophila. Developmental Cell. 6, 343-355 (2004).
  13. Gibson, M. C., Patel, A. B., Nagpal, R., Perrimon, N. The emergence of geometric order in proliferating metazoan epithelia. Nature. 442, 1038-1041 (2006).
  14. Robertson, C. W. The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes. Journal of Morphology. 59, 351-399 (1936).
  15. Mandaravally Madhavan, M., Schneiderman, H. A. Histological analysis of the dynamics of growth of imaginal discs and histoblast nests during the larval development of Drosophila melanogaster. Wilhelm Roux’s archives of Developmental Biology. 183, 269-305 (1977).
  16. Kornberg, T. Compartments in the abdomen of Drosophila and the role of the engrailed locus. Biologie du développement. 86, 363-372 (1981).
  17. Garcia-Bellido, A., Merriam, J. R. Clonal parameters of tergite development in Drosophila. Biologie du développement. 26, 264-276 (1971).
  18. Roseland, C. R., Schneiderman, H. A. Regulation and metamorphosis of the abdominal histoblasts of Drosophila melanogaster. Wilhelm Roux’s archives of Developmental Biology. 186, 235-265 (1979).
  19. Madhavan, M. M., Madhavan, K. Morphogenesis of the epidermis of adult abdomen of Drosophila. Journal of Embryology and Experimental Morphology. 60, 1-31 (1980).
  20. Bischoff, M., Cseresnyes, Z. Cell rearrangements, cell divisions and cell death in a migrating epithelial sheet in the abdomen of Drosophila. Development. 136, 2403-2411 (2009).
  21. Golic, K. G., Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell. 59, 499-509 (1989).
  22. Xu, T., Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 117, 1223-1237 (1993).
  23. Fonck, E., et al. Effect of aging on elastin functionality in human cerebral arteries. Stroke. 40, 2552-2556 (2009).
  24. Rezakhaniha, R., Fonck, E., Genoud, C., Stergiopulos, N. Role of elastin anisotropy in structural strain energy functions of arterial tissue. Biomechanics and Modeling in Mechanobiology. 10, 599-611 (2011).
  25. Hammer, &. #. 2. 1. 6. ;., Harper, D. A., Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontologia electronica. 4, 1-9 (2001).
  26. Gray, R. S., Roszko, I., Solnica-Krezel, L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Developmental Cell. 21, 120-133 (2011).
  27. Vogg, M. C., Wenger, Y., Galliot, B. How Somatic Adult Tissues Develop Organizer Activity. Current Topics in Developmental Biology. 116, 391-414 (2016).
  28. Collinet, C., Rauzi, M., Lenne, P. F., Lecuit, T. Local and tissue-scale forces drive oriented junction growth during tissue extension. Nature Cell Biology. 17, 1247-1258 (2015).
  29. Martin-Blanco, E., et al. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes and Development. 12, 557-570 (1998).
  30. Dye, N. A., et al. Cell dynamics underlying oriented growth of the Drosophila wing imaginal disc. Development. 144, 4406-4421 (2017).
  31. Williams-Masson, E. M., Malik, A. N., Hardin, J. An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. Development. 124, 2889-2901 (1997).
  32. Ferguson, M. W. Palate development. Development. 103, 41-60 (1988).
check_url/fr/60282?article_type=t&slug=imaging-analysis-tissue-orientation-growth-dynamics-developing

Play Video

Citer Cet Article
Mangione, F., Martin-Blanco, E. Imaging and Analysis of Tissue Orientation and Growth Dynamics in the Developing Drosophila Epithelia During Pupal Stages. J. Vis. Exp. (160), e60282, doi:10.3791/60282 (2020).

View Video