Summary

Aumentando a Durabilidade de Culturas de Células Neurais Dissociadas Usando Matriz Coralina Biologicamente Ativa

Published: June 03, 2020
doi:

Summary

A cultura de células dissociadas do hipocampo é uma ferramenta experimental fundamental em neurociência. A sobrevivência e a função das células neurais em cultura são aumentadas quando esqueletos coralinos são usados como matrizes, devido ao seu papel neuroprotetor e neuromodulador. Assim, as células neurais cultivadas em matriz coralina apresentam maior durabilidade e, portanto, são mais adequadas para o cultivo.

Abstract

Culturas de células neuronais e gliais do hipocampo dissociadas são um modelo experimental valioso para estudar o crescimento e a função neural, proporcionando alto isolamento celular e um ambiente controlado. No entanto, a sobrevivência das células do hipocampo in vitro está comprometida: a maioria das células morre durante a primeira semana de cultivo. Portanto, é de grande importância identificar maneiras de aumentar a durabilidade das células neurais em cultura.

O carbonato de cálcio na forma de aragonita cristalina derivada do esqueleto de corais pode ser usado como uma matriz ativa superior para culturas neurais. Ao nutrir, proteger e ativar as células gliais, o esqueleto do coral aumenta a sobrevivência e o crescimento dessas células in vitro melhor do que outras matrizes.

Este protocolo descreve um método para cultivar células hipocampais em uma matriz coralina. Essa matriz é gerada pela fixação de grãos de esqueletos de corais em pratos de cultura, frascos e lamínulas de vidro. Os grãos ajudam a melhorar o ambiente das células, introduzindo-as em um ambiente tridimensional fino (3D) para crescer e formar estruturas semelhantes a tecidos. O ambiente 3D introduzido pelo esqueleto do coral pode ser otimizado para as células por moagem, o que permite o controle sobre o tamanho e a densidade dos grãos (ou seja, a rugosidade da matriz), uma propriedade que foi encontrada para influenciar a atividade das células gliais. Além disso, o uso de grãos facilita a observação e análise das culturas, principalmente quando se utiliza microscopia de luz. Assim, o protocolo inclui procedimentos para geração e otimização da matriz coralina como ferramenta para melhorar a manutenção e funcionalidade das células neurais in vitro.

Introduction

Culturas de células neurais dissociadas, neste caso células hipocampais, são um valioso modelo experimental para o estudo do crescimento e função neural, proporcionando alto isolamento celular e acessibilidade 1,2,3. Esse tipo de cultura é frequentemente utilizado em neurociências, desenvolvimento de fármacos e engenharia de tecidos devido à grande quantidade de informações que podem ser coletadas, tais como taxas de crescimento e viabilidade, neurotoxicidade, crescimento e rede de neuritos, conectividade e plasticidade sináptica, modificações morfológicas, organização e fiação de neuritos, etc.1,4,5,6,7.

Apesar da importância das culturas, as células cultivadas são geralmente forçadas a crescer sobre lamínulas de vidro em uma monocamada bidimensional. Essas modificações ambientais estritas diminuem significativamente a capacidade de sobrevivência das células neurais ao longo do tempo, pois as lamínulas de vidro são substratos não nutritivos com baixa força de adesão, exibindo menor capacidade de suportar o crescimento celular 8,9,10,11.

Como as células neurais cultivadas são forçadas a crescer em condições desafiadoras, uma abordagem essencial para aumentar sua sobrevivência seria imitar ao máximo seu ambiente natural12,13. Isso poderia ser obtido com o uso de biomateriais que atuarão como matrizes e mimetizarão a matriz extracelular das células, permitindo que elas formem uma estrutura semelhante a um tecido e auxiliem na sua nutrição14.

O uso de biomateriais é uma abordagem promissora no aprimoramento de culturas celulares, pois atuam como arcabouços biocompatíveis, proporcionando estabilidade mecânica e melhorando uma variedade de propriedades celulares, incluindo adesão, sobrevivência, proliferação, migração, morfogênese e diferenciação15,16,17. Vários tipos de biomateriais são utilizados para melhorar as condições das células in vitro. Entre eles estão os biopolímeros, ou componentes biológicos que geralmente fazem parte da matriz extracelular das células. Esses biomateriais são utilizados principalmente como forma de agentes polimerizados de revestimento ou hidrogéis18,19,20. Por um lado, as matrizes citadas acima conferem às células um ambiente 3D familiar para crescer, estimulam sua adesão ao prato e lhes dão suporte mecânico21,22. Por outro lado, sua forma polimerizada e o confinamento das células dentro de hidrogéis perturbam o acesso das células aos componentes nutritivos presentes nos meios de crescimento e também dificultam o acompanhamento das células por métodos microscópicos23.

Exoesqueletos de corais são matrizes biológicas de origem marinha. Eles são feitos de carbonato de cálcio, têm estabilidade mecânica e são biodegradáveis. Estudos prévios utilizando o esqueleto de coral como matriz para o crescimento de células neurais em cultura mostraram adesão muito maior, em comparação com lamínulas de vidro24,25. Além disso, células neurais cultivadas no esqueleto do coral demonstraram sua capacidade de ingerir o cálcio do esqueleto composto, o que protege as células neurais em condições de privação de nutrientes26. Além disso, o esqueleto do coral é uma matriz de suporte e nutrição que aumenta a sobrevivência das células neurais, estimula a formação de redes neurais, eleva a taxa de conectividade sináptica e possibilita a formação de estruturas semelhantes a tecidos27,28. Estudos recentes também têm demonstrado que a topografia superficial da matriz do esqueleto coral desempenha um papel crucial na distribuição e ativação das célulasgliais8,29. Além disso, o esqueleto de coral é eficaz como matriz para o cultivo de outros tipos celulares, como osteócitos30,31, hepatócitos e cardiomiócitos em cultura (dados não publicados).

Assim, o esqueleto de corais é uma matriz promissora para o cultivo de células in vitro. Assim, o protocolo detalhado a seguir descreve a técnica de cultivo de células neurais no esqueleto de corais para a produção de culturas neurais mais estáveis e prósperas do que aquelas alcançadas pelos métodos existentes. Esse protocolo também pode ser útil para o cultivo de cardiomiócitos, hepatócitos e outros tipos celulares.

Protocol

O uso de animais neste protocolo foi aprovado pelo Comitê Nacional de Cuidados e Uso de Animais. NOTA: Esqueletos de corais carbonatados com cálcio devem ser usados na forma cristalina de aragonita. Os tipos de corais testados até agora para culturas neurais são Porites Lutea, Stylophora Pistillata e Trachyphyllia Geoffroyi. Os esqueletos podem ser comprados inteiros ou terrestres. 1. Limpeza das peças do esqueleto do coral <p class="jove_co…

Representative Results

Para preparar a matriz do esqueleto do coral, todo o esqueleto do coral (Figura 1A) foi quebrado em fragmentos de 0,5 a 2 cm com martelo (Figura 1B) e completamente limpo dos resíduos orgânicos em três etapas (etapa 1 do protocolo) com solução de hipoclorito a 10%, solução de NaOH 1M e solução de H 2 O2 a 30% (Figura 1C). Os fragmentos de corais foram bem limpos quando a cor do esqueleto mudou de marro…

Discussion

A técnica aqui apresentada descreve uma maneira de melhorar a manutenção e funcionalidade de células neurais em cultura. Isto é conseguido através da adesão das células a uma matriz feita de grãos de esqueleto de coral que nutre as células e promove o seu crescimento e atividade. O uso dessa técnica aumenta a capacidade do modelo de cultura neural de imitar o ambiente das células no cérebro.

A introdução da matriz como substrato de cultura apresenta diversas vantagens sobre outr…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi financiado pelo programa KAMIN do Ministério do Comércio e Trabalho de Israel e pela Qrons Inc., 777 Brickell Avenue Miami, FL 33131, EUA.

Materials

24-well plates Greiner #60-662160
B-27 Gibco #17504-044
Bovine Serum Albumin (BSA) Sigma #A4503
D – glucose Sigma #G8769
Dulbecco's Minimal Essential Eagle (DMEM) Sigma #D5796
Electrical sieve Ari Levy #3700
Fetal Bovine Serun (FBS) Biological Industries #04-007-1A
First Day Medium 85.1% Minimum Essential Eagle’s medium (MEM), 11.5% heat-inactivated fetal bovine serum, 1.2% L-Glutamine and 2.2% D-Glucose.
Flasks Greiner #60-690160 25cm^2, Tissue culture treated
Fluoro-deoxy-uridine Sigma #F0503
Glass Coverslips Menzel-Glaser #BNCB00120RA1
H2O2 Romical #007130-72-19 Hazardous
Ham's F-12 Nutrient Mixture Sigma #N4888
HANK'S solution Sigma #H6648
Kynurenic acid Sigma #K3375
L – glutamine Sigma #G7513
Manual strainer (40µm) VWR #10199-654
Minimun Essential Eagle (MEM) Sigma #M2279
Mortar and pestle De-Groot 4-P090
NaClO (Sodium Hypochlorite) Sigma #425044 Hazardous
NaOH Sigma #S8045 Hazardous
Neuronal Growth Medium 45% MEM, 40% Dulbecco's modified eagle's medium (DMEM), 10% Nutrient mixture F-12 Ham, 0.25% (w/v) bovine serum albumin (BSA), 0.75% D-glucose, 0.25% L-Glutamine, 0.5% B-27 supplement, 0.1% kynurenic acid, 0.01% of 70 % uridine and 30% fluoro-deoxy-uridine.
Petri dish Greiner #60-628160, #60-627160 60mm, 35mm, respectively.
Poly D – Lysine Sigma #P7280
Smart Dentin Grinder KometaBio #GR101
Trypsin Gibco #15-090-046
Uridine Sigma #U3750

References

  1. Pan, L., et al. An in vitro method to manipulate the direction and functional strength between neural populations. Frontiers in Neural Circuits. 9, 32 (2015).
  2. Wellbourne-Wood, J., Chatton, J. Y. From Cultured Rodent Neurons to Human Brain Tissue: Model Systems for Pharmacological and Translational Neuroscience. ACS Chemical Neuroscience. 9 (8), 1975-1985 (2018).
  3. Molnár, E. Long-term potentiation in cultured hippocampal neurons. Seminars in Cell & Developmental Biology. 22 (5), 506-513 (2011).
  4. Silva, R. F. M., et al. Dissociated primary nerve cell cultures as models for assessment of neurotoxicity. Toxicology Letters. 163 (1), 1-9 (2006).
  5. Timmerman, R., Burm, S. M., Bajramovic, J. J. An Overview of in vitro Methods to Study Microglia. Frontiers in Cellular Neuroscience. 12, (2018).
  6. Ogata, N., Tatebayashi, H. Primary culture of mammalian brain neurons and its application to patch-clamp recording. Nihon Yakurigaku Zasshi. Folia Pharmacologica Japonica. 98 (4), 245-250 (1991).
  7. Lonchamp, E., Dupont, J. L., Beekenkamp, H., Poulain, B., Bossu, J. L. The mouse cerebellar cortex in organotypic slice cultures: an in vitro model to analyze the consequences of mutations and pathologies on neuronal survival, development, and function. Critical Reviews in Neurobiology. 18 (1-2), 179-186 (2006).
  8. Weiss, O. E., et al. Modulation of scar tissue formation in injured nervous tissue cultivated on surface-engineered coralline scaffolds. Journal of Biomedical Materials Research. Part B, Applied Biomaterials. , (2017).
  9. Chen, J., Herrup, K. Selective vulnerability of neurons in primary cultures and in neurodegenerative diseases. Reviews in the Neurosciences. 19 (4-5), 317-326 (2008).
  10. Potter, S. M., DeMarse, T. B. A new approach to neural cell culture for long-term studies. Journal of Neuroscience Methods. 110 (1-2), 17-24 (2001).
  11. Kaech, S., Huang, C. F., Banker, G. General considerations for live imaging of developing hippocampal neurons in culture. Cold Spring Harbor Protocols. 2012 (3), 312-318 (2012).
  12. Watson, P. M. D., Kavanagh, E., Allenby, G., Vassey, M. Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation. SLAS discovery: Advancing Life Sciences R & D. 22 (5), 583-601 (2017).
  13. Karimi, M., et al. Microfluidic systems for stem cell-based neural tissue engineering. Lab on a Chip. 16 (14), 2551-2571 (2016).
  14. Murphy, A. R., Laslett, A., O’Brien, C. M., Cameron, N. R. Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomaterialia. 54, 1-20 (2017).
  15. Walker, P. A., et al. Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury. Stem Cell Reviews. 5 (3), 283-300 (2009).
  16. Pettikiriarachchi, J. T. S., Parish, C. L., Shoichet, M. S., Forsythe, J. S., Nisbet, D. R. Biomaterials for Brain Tissue Engineering. Australian Journal of Chemistry. 63 (8), 1143-1154 (2010).
  17. Lu, T., Li, Y., Chen, T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. International Journal of Nanomedicine. 8, 337-350 (2013).
  18. Maclean, F. L., Rodriguez, A. L., Parish, C. L., Williams, R. J., Nisbet, D. R. Integrating Biomaterials and Stem Cells for Neural Regeneration. Stem Cells and Development. 25 (3), 214-226 (2016).
  19. Drury, J. L., Mooney, D. J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 24 (24), 4337-4351 (2003).
  20. Woerly, S., Marchand, R., Lavallée, G. Intracerebral implantation of synthetic polymer/biopolymer matrix: a new perspective for brain repair. Biomaterials. 11 (2), 97-107 (1990).
  21. Dillon, G. P., Yu, X., Sridharan, A., Ranieri, J. P., Bellamkonda, R. V. The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. Journal of Biomaterials Science, Polymer Edition. 9 (10), 1049-1069 (1998).
  22. Carballo-Molina, O. A., Velasco, I. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Frontiers in Cellular Neuroscience. 9, (2015).
  23. George, J., Hsu, C. C., Nguyen, L. T. B., Ye, H., Cui, Z. Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnology Advances. , (2019).
  24. Shany, B., et al. Aragonite crystalline biomatrices support astrocytic tissue formation in vitro and in vivo. Tissue Engineering. 12 (7), 1763-1773 (2006).
  25. Baranes, D., López-García, J. C., Chen, M., Bailey, C. H., Kandel, E. R. Reconstitution of the hippocampal mossy fiber and associational-commissural pathways in a novel dissociated cell culture system. Proceedings of the National Academy of Sciences of the United States of America. 93 (10), 4706-4711 (1996).
  26. Peretz, H., Talpalar, A. E., Vago, R., Baranes, D. Superior survival and durability of neurons and astrocytes on 3-dimensional aragonite biomatrices. Tissue Engineering. 13 (3), 461-472 (2007).
  27. Shany, B., Vago, R., Baranes, D. Growth of primary hippocampal neuronal tissue on an aragonite crystalline biomatrix. Tissue Engineering. 11 (3-4), 585-596 (2005).
  28. Baranes, D., et al. Interconnected network of ganglion-like neural cell spheres formed on hydrozoan skeleton. Tissue Engineering. 13 (3), 473-482 (2007).
  29. Morad, T. I., et al. Gliosis of astrocytes cultivated on coral skeleton is regulated by the matrix surface topography. Biomedical Materials. 14 (4), 045005 (2019).
  30. Green, D. W., et al. A Therapeutic Potential for Marine Skeletal Proteins in Bone Regeneration. Marine Drugs. 11 (4), 1203-1220 (2013).
  31. Neto, A. S., Ferreira, J. M. F. Synthetic and Marine-Derived Porous Scaffolds for Bone Tissue Engineering. Materials. 11 (9), (2018).
  32. Ahmad Khalili, A., Ahmad, M. R. A Review of Cell Adhesion Studies for Biomedical and Biological Applications. International Journal of Molecular Sciences. 16 (8), 18149-18184 (2015).
  33. . Visualization of the ultrastructural interface of cells with the outer and inner-surface of coral skeletons Available from: https://www.ncbi.nlm.nih.gov/pubmed/19218486 (2019)
  34. Drake, J. L. Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proceedings of the National Academy of Sciences of the United States of America. 110 (10), 3788-3793 (2013).
  35. Ramos-Silva, P., et al. The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Molecular Biology and Evolution. 30 (9), 2099-2112 (2013).
  36. Peretz, H., Blinder, P., Baranes, D., Vago, R. Aragonite crystalline matrix as an instructive microenvironment for neural development. Journal of Tissue Engineering and Regenerative Medicine. 2 (8), 463-471 (2008).
  37. Morad, T. . CaCO3 Matrix Dictates Astrocytes Transition to Astrogliosis. , (2019).
  38. Prada, F., et al. Ocean warming and acidification synergistically increase coral mortality. Scientific Reports. 7, (2017).
check_url/fr/60443?article_type=t

Play Video

Citer Cet Article
Weiss, O. E., Hendler, R. M., Baranes, D. Increasing Durability of Dissociated Neural Cell Cultures Using Biologically Active Coralline Matrix. J. Vis. Exp. (160), e60443, doi:10.3791/60443 (2020).

View Video