Summary

阿拉伯多普西斯局部和系统伤口信号的广域实时成像

Published: June 04, 2021
doi:

Summary

细胞外谷氨酸触发的全身钙信号对于植物防御对植物机械伤害和食草动物攻击的反应至关重要。本文描述了一种使用 阿拉伯多普西斯塔利亚纳 植物表达钙和谷氨酸敏感荧光生物传感器来可视化这两种因素的空间和时间动力学的方法。

Abstract

植物对机械应力(如伤害和食草)做出反应,在受损部位和未损坏部位诱导防御响应。叶子受伤后,伤口部位的细胞酸钙离子浓度(Ca2+ 信号)增加。此信号被快速传输到未损坏的叶子上,在那里防御响应被激活。我们最近的研究表明,谷氨酸从叶子的受伤细胞泄漏到它们周围的凋亡作为伤口信号。这种谷氨酸激活谷氨酸受体般的Ca2+ 渗透通道,然后导致长途Ca2+ 信号在整个植物中传播。这些事件的空间和时间特征可以通过实时成像来捕捉表达基因编码荧光生物传感器的活植物。在这里,我们引入了全厂实时成像方法,以监测 Ca2+ 信号的动态以及因受伤而发生的可塑性谷氨酸变化。这种方法使用广域荧光显微镜和转基因 阿拉伯多普西植物 表达绿色荧光蛋白(GFP)为基础的Ca2+ 和谷氨酸生物传感器。此外,我们提出的方法,以容易引起伤口诱导,谷氨酸触发的快速和远距离Ca2+ 信号传播。该协议还可用于其他植物应力的研究,以帮助调查植物系统信号可能如何参与其信号和响应网络。

Introduction

植物无法摆脱生物应力,例如,以它们为食的昆虫,因此它们已经进化出复杂的应力感应和信号转导系统来检测,然后保护自己免受诸如食草动物1这样的挑战。在受伤或食草动物攻击时,植物会启动快速防御反应,包括植物激素茉莉酸(JA)的积累,不仅在受伤部位,而且在未损坏的解剖器官2。然后,此 JA 都会触发直接受损组织的防御响应,并先发制人地在植物未损坏的部分诱导防御。在阿拉伯多普西斯,在植物其他地方的损伤后几分钟内,就检测到由伤痕引起的JA积累,这说明从受伤的叶3中传输了快速和远距离的信号。一些候选者,如Ca2+,活性氧物种(ROS)和电信号,已被建议作为这些远程伤口信号在植物4,5。

Ca2+是真核生物中最通用和无处不在的第二信使元素之一。在植物中,毛毛虫咀嚼和机械伤害导致细胞溶胶Ca2+浓度([Ca2]细胞)在受伤的叶子和未缠绕的远处叶6,7急剧增加。此系统 Ca2+信号由细胞内 Ca2+感应蛋白接收,导致下游防御信号通路(包括 JA 生物合成 89)的激活。尽管许多此类报告支持Ca2+信号在植物伤口反应中的重要性,但关于Ca2+信号的空间和时间特征的信息有限。

使用基因编码的 Ca2+指示器进行实时成像是监控和量化 Ca2+信号的空间和时间动态的强大工具。迄今为止,已经开发出这种传感器的版本,使Ca2+信号在单个细胞的水平,组织,器官,甚至整个植物10的可视化。在植物中用于Ca2+的第一个基因编码生物传感器是来自水母Eequorea维多利亚11的生物发光蛋白 aquorin。虽然这种化疗蛋白已被用于检测Ca2+的变化,以响应植物的各种应力12,13,14,15,16,17,18,它不适合实时成像,因为它产生的极低的发光信号。基于 Fürster 共振能量转移 (FRET) 的Ca2+指标(如黄骆驼)也已成功用于调查19、20、21、22、23、24工厂中一系列 Ca2+信号事件的动态。这些传感器与成像方法兼容,最常见的是由来自肌素光链激酶的Ca2+结合蛋白(CAM)和CAM结合肽(M13)组成,全部融合在两种荧光蛋白之间,通常是青色荧光蛋白(CFP)和黄色荧光蛋白变种(YFP)10。Ca2+与 CaM 的绑定可促进 CAM 和 M13 之间的交互,从而导致传感器的构象更改。这一变化促进了 CFP 和 YFP 之间的能量转移,这增加了 YFP 的荧光强度,同时减少了 CFP 的荧光排放。监控从 CFP 到 YFP 荧光的这种转变,然后提供 Ca2+水平增加的度量。除了这些FRET传感器,单荧光蛋白(FP)为基础的Ca2+生物传感器,如GCaMP和R-GECO,也与植物成像方法兼容,并广泛用于研究[Ca2+]细胞的变化,由于其高灵敏度和易用性25,26,27,28,29,30。GCAMP 包含单个圆形排列 (cp) GFP,再次融合到 CaM 和 M13 肽中。CaM 和 M13 之间的 Ca2+依赖互导致传感器的构象变化,从而促进 cpGFP 质子状态的改变,增强其荧光信号。因此,随着 Ca2+级别的上升,cpGFP 信号会增加。

为了研究Ca2+信号的动态,以响应机械伤害或食草动物喂养,我们使用了转基因阿拉比多普西塔利亚纳植物表达GCaMP变种,GCaMP3,和广域荧光显微镜6。这种方法成功地可视化从叶子上的伤口部位到整个工厂的长途Ca2+信号的快速传输。因此,在伤口部位立即检测到 [Ca2]细胞的增加,但随后在受伤后几分钟内通过血管向邻近的叶子传播此 Ca2+信号。此外,我们发现,这种快速全身伤口信号的传输在阿拉伯多皮西斯植物中被废除,在两个谷氨酸受体样基因,谷氨酸受体喜欢(GLR), GLR3.3GLR3.6 6突变.GLR似乎作为氨基酸门卡2+通道参与不同的生理过程,包括伤口反应3,花粉管生长31,根发育32,冷反应33,和先天免疫34。尽管GLR具有这种广为人知的、广泛的生理功能,但有关其功能特性的信息,如配体特异性、离子选择性和亚细胞定位,是有限的。然而,最近的研究表明,GLR3.3和GLR3.6分别在胶合板和二甲苯中本地化。植物GLR与哺乳动物的电电性谷氨酸受体(iGlluRs)36有相似之处,后者由氨基酸激活,如谷氨酸、甘氨酸和D-塞林在哺乳动物神经系统37。事实上,我们证明,在伤口部位应用100m谷氨酸,但不是其他氨基酸,在阿拉伯多维西斯诱导一个快速的长途Ca2+信号,表明细胞外谷氨酸可能作为伤口信号在植物6。这种反应在glr3.3/glr3.6突变体中被废除,这表明谷氨酸可能通过其中一个或两个受体样通道起作用,事实上,AtGL3.6最近被这些水平的谷氨酸38所封闭。

在植物中,除了其作为结构氨基酸的作用外,谷氨酸还被提议为关键的发育调节器39:然而,其空间和时间动态却鲜为人知。正如Ca2+,已经开发出几个基因编码的谷氨酸指标,以监测这种氨基酸在活细胞40,41的动态。iGluSnFR是一种基于GFP的单FP谷氨酸生物传感器,由cpGFP和来自埃斯切里西亚大肠杆菌42,43的谷氨酸结合蛋白(GltI)组成。由谷氨酸与 GltI 结合引起的 iGluSnFR 的构象变化导致 GFP 荧光排放增强。为了调查细胞外谷氨酸是否在植物伤口反应中起到信号分子的作用,我们将 iGluSnFR 序列与基本的奇蒂纳塞信号肽分泌序列 (CHIB-iGluSnFR) 连接起来,以便在肿瘤空间6中本地化这种生物传感器。这种方法使使用表达此传感器的转基因阿拉伯多普西斯植物能够成像丙酮谷氨酸浓度([Glu]apo)的任何变化。我们检测到受伤现场的 iGluSnFR 信号迅速增加。这些数据支持了谷氨酸在受伤时从受损的细胞/组织泄漏到凋亡者的想法,并充当激活GLR的损伤信号,并导致植物6中的长途Ca2+信号。

在这里,我们描述了一种全植物的实时成像方法,使用基因编码的生物传感器来监测和分析长途Ca2+ 和细胞外谷氨酸信号的动态,以回应伤害6。宽场荧光显微镜和转基因植物表达基因编码的生物传感器提供了一个强大但易于实施的方法来检测快速传输的远距离信号,如Ca2+ 波。

Protocol

1. 植物材料制备 在1.5 mL微管中,表面用20%(v/v)NaClO摇动3分钟,然后用无菌蒸馏水清洗5次,对 阿拉伯多普西斯塔利亚纳 (Col-0加入)植物的种子进行消毒,表达GCaMP3或CHIB-iGlusnFR。注:阿拉伯多普西斯表达GCaMP3或CHIB-iGluSnFR的转基因线已经描述过前6。 在无菌罩中,在装满 30 mL 无菌(自动切割)Murashige 和 Skoog (MS) 介质 [1 倍 MS 盐] 的 10 厘米方形?…

Representative Results

[Ca2]细胞和 [Glu]apo的信号传播,以回应伤害,呈现在图 3,图 4,电影S1和电影 S2.在表达 GCaMP3 (在 0s) 的植物中切割叶 1 的娇小导致 [Ca2]细胞显著增加,这些细胞通过血管(40s) (图 3和电影S1)在当地迅速诱发。随后,信号?…

Discussion

系统信号对于植物响应局部外部环境刺激,然后在整个工厂水平上保持其平衡非常重要。虽然他们没有配备像动物这样的高级神经系统,但他们根据移动电气(可能还有液压)信号和ROS和Ca2+46,47的传播波等因素,在器官内部和器官之间使用快速通信。上述协议允许通过监测Ca2+和可塑性谷氨酸的动态来对该信号系统的活动进行全厂实时?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了日本科学促进会(17H05007和18H05491)向MT、国家科学基金会(IOS1557899和MCB2016177)和国家航空和航天局(NNX14AT25G和80NSSC19K0126)向SG提供的赠款的支持。

Materials

Arabidopsis expressing GCaMP3 Saitama University
Arabidopsis expressing CHIB-iGluSnFR Saitama University
GraphPad Prism 7 GraphPad Software
L-Glutamate FUJIFILM Wako 072-00501 Dissolved in a liquid growth medium [1/2x MS salts, 1% (w/v) sucrose, and 0.05% (w/v) MES; pH 5.1 adjusted with 1N KOH].
Microsoft Excel Microsoft Corporation
Murashige and Skoog (MS) medium FUJIFILM Wako 392-00591 composition: 1x MS salts, 1% (w/v) sucrose, 0.01% (w/v) myoinositol, 0.05% (w/v) MES, and 0.5% (w/v) gellan gum; pH 5.7 adjusted with 1N KOH.
Nikon SMZ25 stereomicroscope Nikon
NIS-Elements AR analysis Nikon
1x objective lens (P2-SHR PLAN APO) Nikon
sCMOS camera (ORCA-Flash4.0 V2) Hamamatsu Photonics C11440-22CU
Square plastic Petri dish Simport D210-16

References

  1. Wu, J., Baldwin, I. T. Herbivory-induced signalling in plants: perception and action. Plant, Cell & Environment. 32 (9), 1161-1174 (2009).
  2. Howe, G. A., Major, I. T., Koo, A. J. Modularity in Jasmonate Signaling for Multistress Resilience. Annual Review of Plant Biology. 69 (1), 387-415 (2018).
  3. Mousavi, S. A. R., Chauvin, A., Pascaud, F., Kellenberger, S., Farmer, E. E. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature. 500 (7463), 422-426 (2013).
  4. Gilroy, S., et al. Electric Signals: Key Mediators of Rapid Systemic Signaling in Plants. Plant Physiology. 171 (3), 1606-1615 (2016).
  5. Choi, W. -. G., Hilleary, R., Swanson, S. J., Kim, S. -. H., Gilroy, S. Rapid, long-distance electrical and calcium signaling in plants. Annual Review of Plant Biology. 67 (1), 287-307 (2016).
  6. Toyota, M., et al. Glutamate triggers long-distance, calcium-based plant defense signaling. Science. 361 (6407), 1112-1115 (2018).
  7. Nguyen, C. T., Kurenda, A., Stolz, S., Chételat, A., Farmer, E. E. Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proceedings of the National Academy of Sciences of the United States of America. 115 (40), 10178-10183 (2018).
  8. Lecourieux, D., Ranjeva, R., Pugin, A. Calcium in plant defence-signalling pathways. New Phytologist. 171 (2), 249-269 (2006).
  9. Farmer, E. E., Gao, Y. -. Q., Lenzoni, G., Wolfender, J. -. L., Wu, Q. Wound- and mechanostimulated electrical signals control hormone responses. New Phytologist. 227 (4), 1037-1050 (2020).
  10. Palmer, A. E., Qin, Y., Park, J. G., McCombs, J. E. Design and application of genetically encoded biosensors. Trends in Biotechnology. 29 (3), 144-152 (2011).
  11. Ridgway, E. B., Ashley, C. C. Calcium transients in single muscle fibers. Biochemical and Biophysical Research Communications. 29 (2), 229-234 (1967).
  12. Kiegle, E., Moore, C. A., Haseloff, J., Tester, M. A., Knight, M. R. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. The Plant Journal. 23 (2), 267-278 (2000).
  13. Zhu, X., Feng, Y., Liang, G., Liu, N., Zhu, J. -. K. Aequorin-based luminescence imaging reveals stimulus- and tissue-specific Ca2+ dynamics in Arabidopsis plants. Molecular Plant. 6 (2), 444-455 (2013).
  14. Kwaaitaal, M., Huisman, R., Maintz, J., Reinstädler, A., Panstruga, R. Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana. Biochemical Journal. 440 (3), 355-373 (2011).
  15. Vatsa, P., et al. Involvement of putative glutamate receptors in plant defence signaling and NO production. Biochimie. 93 (12), 2095-2101 (2011).
  16. Toyota, M., Furuichi, T., Sokabe, M., Tatsumi, H. Analyses of a gravistimulation-specific Ca2+ signature in Arabidopsis using parabolic flights. Plant Physiology. 163 (2), 543-554 (2013).
  17. Toyota, M. Hypergravity stimulation induces changes in intracellular calcium concentration in Arabidopsis seedlings. Advances in Space Research. 39, 1190-1197 (2007).
  18. Stephan, A. B., Kunz, H. -. H., Yang, E., Schroeder, J. I. Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proceedings of the National Academy of Sciences of the United States of America. 113 (35), 5242-5249 (2016).
  19. Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M., Miyawaki, A. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America. 101 (29), 10554-10559 (2004).
  20. Choi, W. -. G., Toyota, M., Kim, S. -. H., Hilleary, R., Gilroy, S. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proceedings of the National Academy of Sciences of the United States of America. 111 (17), 6497-6502 (2014).
  21. Evans, M. J., Choi, W. -. G., Gilroy, S., Morris, R. J. A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiology. 171 (3), 1771-1784 (2016).
  22. Hilleary, R., et al. Tonoplast-localized Ca2+ pumps regulate Ca2+ signals during pattern-triggered immunity in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America. 117 (31), 18849-18857 (2020).
  23. Lenglet, A., et al. Control of basal jasmonate signalling and defence through modulation of intracellular cation flux capacity. New Phytologist. 216 (4), 1161-1169 (2017).
  24. Choi, W. -. G., Swanson, S. J., Gilroy, S. High-resolution imaging of Ca2+, redox status, ROS and pH using GFP biosensors. The Plant Journal. 70 (1), 118-128 (2012).
  25. Nagai, T., Sawano, A., Park, E. S., Miyawaki, A. Circularly permuted green fluorescent proteins engineered to sense Ca2. Proceedings of the National Academy of Sciences of the United States of America. 98 (6), 3197-3202 (2001).
  26. Nakai, J., Ohkura, M., Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnology. 19 (2), 137-141 (2001).
  27. Keinath, N. F., et al. Live cell imaging with R-GECO1 sheds light on flg22- and Chitin-induced transient [Ca2+]cyt patterns in Arabidopsis. Molecular Plant. 8 (8), 1188-1200 (2015).
  28. Zhao, Y., et al. An expanded palette of genetically encoded Ca2+ indicators. Science. 333 (6051), 1888-1891 (2011).
  29. Vincent, T. R., et al. Real-time in vivo recording of Arabidopsis calcium signals during insect feeding using a fluorescent biosensor. JoVE. (126), e56142 (2017).
  30. DeFalco, T. A., et al. Using GCaMP3 to study Ca2+ signaling in nicotiana species. Plant and Cell Physiology. 58 (7), 1173-1184 (2017).
  31. Michard, E., et al. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by Pistil D-Serine. Science. 332 (6028), 434-437 (2011).
  32. Singh, S. K., Chien, C. -. T., Chang, I. -. F. The Arabidopsis glutamate receptor-like gene GLR3.6 controls root development by repressing the Kip-related protein gene KRP4. Journal of Experimental Botany. 67 (6), 1853-1869 (2016).
  33. Li, H., et al. Tomato GLR3.3 and GLR3.5 mediate cold acclimation-induced chilling tolerance by regulating apoplastic H2O2 production and redox homeostasis. Plant, Cell & Environment. 42 (12), 3326-3339 (2019).
  34. Li, F., et al. Glutamate receptor-like channel3.3 is involved in mediating glutathione-triggered cytosolic calcium transients, transcriptional changes, and innate immunity responses in Arabidopsis. Plant Physiology. 162 (3), 1497-1509 (2013).
  35. Wudick, M. M., Michard, E., Oliveira Nunes, C., Feijó, J. A. Comparing plant and animal glutamate receptors: common traits but different fates. Journal of Experimental Botany. 69 (17), 4151-4163 (2018).
  36. De Bortoli, S., Teardo, E., Szabò, I., Morosinotto, T., Alboresi, A. Evolutionary insight into the ionotropic glutamate receptor superfamily of photosynthetic organisms. Biophysical Chemistry. 218, 14-26 (2016).
  37. Janovjak, H., Sandoz, G., Isacoff, E. Y. A modern ionotropic glutamate receptor with a K+ selectivity signature sequence. Nature Communications. 2 (1), 232 (2011).
  38. Shao, Q., Gao, Q., Lhamo, D., Zhang, H., Luan, S. Two glutamate- and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis. Science Signaling. 13 (640), (2020).
  39. Forde, B. G., Lea, P. J. Glutamate in plants: metabolism, regulation, and signalling. Journal of Experimental Botany. 58 (9), 2339-2358 (2007).
  40. Okumoto, S., et al. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proceedings of the National Academy of Sciences of the United States of America. 102 (24), 8740-8745 (2005).
  41. Hires, S. A., Zhu, Y., Tsien, R. Y. Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proceedings of the National Academy of Sciences of the United States of America. 105 (11), 4411-4416 (2008).
  42. Marvin, J. S., et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nature Methods. 10 (2), 162-170 (2013).
  43. Marvin, J. S., et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nature Methods. 15 (11), 936-939 (2018).
  44. Farmer, E., Mousavi, S. A. R., Lenglet, A. Leaf numbering for experiments on long distance signalling in Arabidopsis. Protocol Exchange: Preprint server. , (2013).
  45. Harada, A., Shimazaki, K. -. i. Phototropins and blue light-dependent calcium signaling in higher plants. Photochemistry and Photobiology. 83 (1), 102-111 (2007).
  46. Huber, A. E., Bauerle, T. L. Long-distance plant signaling pathways in response to multiple stressors: the gap in knowledge. Journal of Experimental Botany. 67 (7), 2063-2079 (2016).
  47. Choi, W. -. G., et al. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. The Plant Journal. 90 (4), 698-707 (2017).
  48. Tallini, Y. N., et al. Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proceedings of the National Academy of Sciences of the United States of America. 103 (12), 4753-4758 (2006).
  49. Tian, L., et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods. 6 (12), 875-881 (2009).
  50. Chen, T. -. W., et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 499 (7458), 295-300 (2013).
  51. Vincent, T. R., et al. Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding. The Plant Cell. 29 (6), 1460-1479 (2017).
  52. Meena, M. K., et al. The Ca2+ channel CNGC19 regulates Arabidopsis defense against spodoptera herbivory. The Plant Cell. 31 (7), 1539-1562 (2019).
  53. Cheong, Y. H., et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in arabidopsis. The Plant Cell. 15 (8), 1833-1845 (2003).
check_url/fr/62114?article_type=t

Play Video

Citer Cet Article
Uemura, T., Wang, J., Aratani, Y., Gilroy, S., Toyota, M. Wide-Field, Real-Time Imaging of Local and Systemic Wound Signals in Arabidopsis. J. Vis. Exp. (172), e62114, doi:10.3791/62114 (2021).

View Video